PROCEEDINGS
OF

ELEVENTH ANNUAL SOFTWARE ENGINEERING WORKSHOP

Organized by:

Software Engineering Laboratory
GSFC

December 3, 1986

GODDARD SPACE FLIGHT CENTER
Greenbelt, Maryland

FOREWORD

The Software Engineering Laboratory (SEL) is an organization sponsored by the National Aeronautics
and Space Administration Goddard Space Flight Center (NASA/GSFC) and created for the purpose of
investigating the effectiveness of software engineering technologies when applied to the development of
applications software. The SEL was created in 1977 and has three primary organizational members:

NASA/GSFC (Systems Development and Analysis Branch)
The University of Maryland (Computer Sciences Department)
Computer Sciences Corporation (Flight Systems Operation)

The goals of the SEL are (1) to understand the software development process in the GSFC environ-
ment; (2) to measure the effect of various methodologies, tools, and models in this process; and

(3) to identify and then to apply successful development practices. The activities, findings, and rec-
ommendations of the SEL are recorded in the Software Engineering Laboratory Series, a continuing
series of reports that includes this document.

Single copies of this document can be obtained from

NASA Scientific and Technical Installation Facility
P.O. Box 8757
B.W.I. Airport, Md. 21240

il

8:00 a.m.

8:45 a.m.

9:00 a.m.

10:30 a.m.

1100 a.m.

12:30 p.m.

1:30 p.m.

AGENDA

ELEVENTH ANNUAL SOFTWARE ENGINEERING WORKSHOP
NASA/GODDARD SPACE FLIGHT CENTER

BUILDING 8 AUDITORIUM
DECEMBER 3, 1986

Registration—‘Sign-In’
Coffee, Donuts

INTRODUCTORY REMARKS

Session No. 1

“Determining Software Productivity

Leverage Factors™

“Studies of Software Methods and
Environments”

“Designing with ADA for Satellite
Simulation”

BREAK

Session No. 2

“Studying Software Engineering Documen-
tation From a Cognitive Perspective”

“Empirical Research on the Design Process”

“A Quantitative Analysis of the Impact of
Modern Software Engineering Techniques”

LUNCH

Session No. 3

Frank E. McGarry
(NASA/GSFC)

Topic: Research in Software
Engineering Laboratory (SEL)

Frank E. McGarry
(NASA/GSFC)

Vic Basili/Marv Zelkowitz
(University of Maryland)

Bill Agresti (CSC)

Topic: Empirical Studies of
Software Technology

Discussant: Jerry Page (CSC)

Elliot Soloway (YALE)
Vincent Shen (MCC)

John Gaffney (IBM)

Topic: Software Environments

Discussant: Keiji Tasaki
(NASA/GSFC)

3:00 p.m.

3:30 p.m.

5:00 p.m.

AGENDA (Continued)

“The Mothra Software Testing Environment”

“A Value-Chain Analysis of Software Pro-
ductivity Components”

“The Open Architecture of the IDE Tool
Environment”

BREAK

Session No. 4

“Data Diversity—-A New Approach to Fault-
Tolerant Software”

“An Empirical Study of Error Detection
Using Self-Test”

“An Experimental Comparison of Ada and
FORTRAN Program Reliability”

ADJOURN

vi

Eugene Spafford (Georgia Tech)

Barry Boehm (TRW)

Tony Wasserman (IDE, Inc.)

Topic: Software Testing
Discussant: Ed Seidewitz
(NASA/GSFCQ)

John Knight
(University of Virginia)

Nancy Leveson
(University of California, Irvine)

Amrit Goel (Syracuse University)

SUMMARY OF THE ELEVENTH ANNUAL SOFTWARE

ENGINEERING WORKSHOP

Prepared by
Leon Jordan

COMPUTER SCIENCES CORPORATION

January 1987

SUMMARY OF THE ELEVENTH ANNUAL SOFTWARE
ENGINEERING WORKSHOP

The Eleventh Annual Software Engineering Workshop was held
on December 3, 1986, at the National Aeronautics and Space
Administration (NASA)/Goddard Space Flight Center (GSFC) in
Greenbelt, Maryland. This annual meeting is held to report
and discuss experiences in the measurement, utilization, and
evaluation of software methods, models, and tools. The
workshop was organized by the Software Engineering Labora-
tory (SEL), whose members represent NASA/GSFC, the Univer-
sity of Maryland, and Computer Sciences Corporation (CSC).
The workshop was conducted in four sessions:

Research in the SEL
Empirical Studies of Software Technology
Software Environments

Software Testing

Twelve papers were presented, and the audience actively par-
ticipated in all discussions through general commentary,
questions, and interaction with the speakers. Over 360 per-
sons representing 59 private corporations, 9 universities,
18 agencies of the Federal Government, and 8 NASA centers
attended the workshop.

SESSION 1 - RESEARCH IN THE SEL

Session 1 was moderated by Mr. Frank McGarry of GSFC.
McGarry presented a high-level summary of SEL studies and
results and a profile of areas of future efforts for improv-
ing the quality of software production (Determining Software

Productivity Leverage Points in the SEL). He used a tech-
nological index that measures the level of application of

disciplined approaches and discussed leverage points at dif-
ferent stages of the software production process.

L. Jordan
CSC
1 of 19

The leverage points identified are increasing development
efficiency, decreasing required rework, and continuing the
delivery of reliable software. McGarry discussed the SEL
approach to software quality improvement by listing targets
and mechanisms for each leverage point. For increasing
efficiency, there were improving management and testing
effectiveness and effort distribution using structured tech-
niques, testing approaches, code reading, and automated
tools. For decreasing rework, the major targets were in the
area of design and interface errors using prototyping, test-
ing approaches, structured techniques, and independent veri-
fication and validation (IV & V). To sustain the high
quality of delivered systems, measures, models, and IV & V
are applied to minimize the error rate of delivered software
and decrease system complexity.

McGarry showed the effect of the approach on quality in terms
of the improvement in development effort on recent projects
compared to earlier projects. Rework decreased from 45 to
25.percent of development effort; documentation decreased
from 45 to 35 percent; coding decreased from 20 to 15 per-
cent; and code reuse increased from 15 to 25 percent.

McGarry also discussed efforts to encourage tool use by means
of a software development environment under development.
Future efforts in the SEL will focus on cutting the size of
developed systems using software reuse tools, Ada, and 1li-
brary langquages. Prototyping and test aids will be used to
decrease rework. Environments, formal training, and expert
systems for management support will be used to improve proc-

ess efficiency.

Drs. Victor Basili and Marvin Zelkowitz described some tools
and environments used for software development (Studies of

Software Methods and Environments). Basili discussed expert
systems by describing the study of Arrowsmith-P, used to aid

L. Jordan
CSC
2 of 19

the software development project manager. The knowledge base
contains historical information about previous projects in a
homogeneous environment. From a baseline of normalized
software metrics, abnormal values are determined and input

to the system along with a set of possible explanations for
the deviant values. Arrowsmith-P was used to explore such
research issues as efficacy of inference mechanisms (rule-
based deduction versus frame-based abduction), method of
knowledge acquisition (top-down versus bottom-up), trans-
portability, and feasibility.

In conclusion, Basili noted that software management has not
evolved to a state where cause and effect are clearly under-
stood or consistent, as shown by the evaluation of
Arrowsmith-P. In comparing results with actual events, the
rule-based system agreed with 1/4 to 1/2 of the correct in-
terpretation. 1In comparing results with experts, experts
agreed with each other 1/3 to 1/2 of the time, they agreed
with themselves (top-down versus bottom-up) 1/4 to 1/2 of
the time, and the system agreed with the experts 1/4 to 1/2
of the time. The bottom-up and rule-based deduction ap-
proaches performed better and seemed to perform as well as
the experts.

Basili also described TAME, a project aimed at developing a
set of methods and tools supporting a variety of metaprocess
models that can be tailored to specific projects. The proj-
ect will first develop a prototype supporting all kinds of
measurement and evaluation activities and will then inter-
face the TAME prototype to an existing software development
environment. The last phase of the project will develop
guidelines for the design of future environments.

He listed the TAME requirements in terms of purpose, poten-
tial users, and the user view of the system and presented
the architecture as consisting of a PC-based user interface

L. Jordan
CSC
3 of 19

level and mainframe-based evaluation, measurement, and re-
pository levels. Ada dependency occurs at the measurement
and repository levels. The first prototype, scheduled for
completion by the fall of 1987, will implement a restricted
subset of TAME requirements for the Micro VAX (VMS) and
SUN-3 (UNIX) in Ada for the Ada-dependent levels and Pascal
or C (SUN-3) for the Ada-independent levels.

Zelkowitz described an environment (SUPPORT) consisting of a
set of automated design tools developed in Pascal at the
University of Maryland. SUPPORT has multiple windowing ca-
pability, and he discussed its use in terms of an editing
hierarchy. For potential application to NASA software proj-
ects, SUPPORT can be applied to document preparation in gen-
eral and to code preparation by viewing code as a form of
documentation. It can be used to generate templates for
prologs. He also indicated that structure chart capability
could be built into the system.

Dr. William Agresti of CSC presented a status update and
design experiences on an experiment underway in the SEL to
develop a system in parallel in FORTRAN and in Ada and to
compare the two implementations (SEL_Ada Experiment: Status
and Design Experiences). The project, a flight dynamics
simulator for the Gamma Ray Observatory, is expected to be
50 KSLOC (FORTRAN) at completion and is being done on a
VAX-11/780 (FORTRAN) and a VAX-8600 (Ada). The Ada team is
approximately one-half done with coding, and the FORTRAN
team is three-quarters done with acceptance testing. Staff
effort was projected by development phase to be 7.5
(FORTRAN) and 8.5 (Ada) staff-years (including 1.25 staff-
years for Ada training).

In comparing designs in the two projects, Agresti first noted

that the drivers for the FORTRAN project were the legacy of
past designs and schedule constraints. The driver for the

L. Jordan
CSC
4 of 19

.

Ada project was the desire to use new design methods to ex-
ploit Ada features. The Ada team used the Composite Speci-
fications Model (reported in the Ninth SEL Workshop) to
derive an object-oriented design. The design abstractions
for the FORTRAN project were procedural; those for the Ada
project were state machine and object oriented. Agresti
compared the actual designs in terms of hierarchy (seniority
relations) and operation. He also discussed other approaches
to the problem of converting from a FORTRAN to an Ada envi-
ronment and their consequences. Agresti said that committing
to Ada from project start and resisting the FORTRAN legacy
offer the best opportunities to cast requirements in a more
language-neutral form.

In his conclusion, Agresti noted that project management
issues were encountered during the design phase relating to
differences in cost estimation (What is a module?), develop-
ment products (Where are the structure charts?), milestones
(When is design complete?), and the structure of reviews
(What is presented at CDR?). In the area of staffing issues,
he said that he had positive experience with programmers who
had previous training in Pascal and design abstractions and
exposure to several different programming languages. In the
area of technical issues, he mentioned that it is important
to allocate sufficient time to define Ada types, to consider
the extent of using tasking and generics, and to assess the
degree of package nesting versus library units. He also
said that the Ada team produced a significantly different
design from the FORTRAN team, that there are specific condi-
tions that encourage Ada-oriented designs, and that Ada can
influence every aspect of design, especially management ex-
pectations.

In the discussion that followed, Dr. Elliot Soloway commented
that the FORTRAN langquage affects the design and that, in

L. Jordan
CSC
5 of 19

the future, Ada will do the same. Agresti noted that Ada
represents a richer language that is more descriptive of the
problem domain and that this represents progress. Basili
noted that the design is in the context of the language and
that, if this influence were not present, it would be a
problem. Dr. Barry Boehm indicated that Ada projects tend
to attract bright people and asked how this was taken into
account in the experiment. Agresti responded that there
were differences with the application and level of experience
and that these differences were part of the experiment data.
He also noted that the Ada team training was in software
engineering with emphasis on Ada, rather than just in Ada.
McGarry added that the early training for FORTRAN projects
was a l-week course in structured techniques designed by the
University of Maryland and that senior people reinforced
that training throughout the development process.

SESSION 2 - EMPIRICAL STUDIES OF SOFTWARE TECHNOLOGY

Session 2 was moderated by Dr. Gerald Page of CSC.

Dr. Elliot Soloway of Yale University reported on a 2-year
study of software documentation using a cognitive approach
to address questions about the content and format of
documentation and when it should be available (Studying
Software Engineering Documentation From a Cognitive Perspec-

tive). One approach of the study was to understand program-
mers and their expectations by direct observation rather
than to try to understand software. Another approach was to
start the study using small programs. In one part of the
study, programmers were given a 250-line FORTRAN program of
14 subroutines and documentation that followed some generic
guidelines. They were asked to make an enhancement and then
were videotaped as they went about the task. In another
phase of the study, new documentation was provided that pre-
sented information about nonlocal, causal interactions

L. Jordan
CSC
6 of 19

(e.g., information about other downstream parts of the sys-
tem that could generate "gotchas").

The most successful strategy employed by the subjects was a
systematic or global strategy that started at the beginning
of the program and documentation and traced the flow of the
entire program using various forms of simulation. This
strategy invariably led to the correct enhancement. How-
ever, this strategy cannot realistically be used for large
programs because it is not worth the effort to understand a
100-KLOC program to generate a 15-line enhancement. Other
subjects employed an "as-needed” strategy, where they jumped
immediately to the enhancement area and backtracked when
they thought they needed more information. Adopting this
strategy led to mixed results. More often than not, these
subjects did not come to understand nonlocal causal inter-
actions and thus did not develop a correct enhancement. The
conclusion of this phase of the study was that documentation
must provide information about these nonlocal causal inter-
actions.

Soloway said that the real issue is what information pro-
grammers need and, especially, when do they need it. To
approach this question, he described a second study in which
two programmers were given a 3-foot-high stack of documenta-
tion describing a 60-KSLOC program and were asked to make an
enhancement. They each spent nearly 2 hours reading docu-
mentation, trying to understand what the system did in terms
of the goals of the system and each of the various modules
of the system. These goals were cited in the documentation
but were interwoven with many low-level details that served
to hide the main points and confuse the programmer. He ob-
served that they needed this information first, and the
first manual of the set of documentation was rewritten to
provide it. When the experiment was rerun with the revised

documentation, it took 20 minutes for the two subjects to

L. Jordan
CSC
7 of 19

correctly identify the module where the change needed to be
made.

Dr. Vincent Shen of MCC reported on a field study that was
part of a larger research program to produce a design envi-
ronment (Empirical Research on the Design Process). This

study surveyed 19 large development projects, spending 1 or
2 days at each site, and taping 20- to 40-minute interviews
to record their decision-making and communication process.
Interviewees were system engineers, senior designers, proj-
ect managers, division general managers, testing and quality
assurance personnel, and customers. In the analysis of
eight projects to date, attempts were made to identify key
leverage points, technology transfer issues, and design
problems for consideration of requirements for the design
environment.

Shen identified the top five problems identified by the
analysis as personnel (a project needs good people), commu-
nication and coordination, dealing with uncertainty and
change, design representation and analysis, and technology
transfer (it is difficult to get people to use new technol-
ogy). In the area of personnel, the study revealed that an
effective team is composed of an application specialist, a
conceptualizer (to follow at a high level what is going on),
a boundary spanner (to explain groups to each other), a gate
keeper (to ensure that the team is not influenced by extra-
neous events or technology), a diagnostician, and a feature
manager (who knows what currently needs to be done).

Problems in the area of communication and coordination are
information overload, delay, and deprivation. Dealing with
uncertainty and change is important to reduce wasted ef-
fort. Uncertainty generates "floating issues" (missing and
conflicting information). Change generates new information

L. Jordan
CSC
8 of 19

in the areas of goals, people, technology, policy, stand-
ards, and procedures.

The design representation and analysis process records the
design status and rationale. This area relies on represen-
tation media (e.g., text, graphics, and prototypes) and on
analytical and simulation models. Effective technology
transfer is important to ensure the use of the best tools
available. It is important to be aware of and to assess new
technology and to counter cultural resistance.

In summary, Shen said that when conducting research in large,
complex systems, engineering should focus on the needs in
each of these five problem areas. These needs include sup-
port in role identification and communication breakdown de-
tection; intelligent filters and active probes to support
quick access to relevant information; rigorous methods to
make the specification of floating issues and changes and
their impacts explicit; mechanisms to compare the behavior
of the design with the unclear customer needs; and experi-
ments to test learning models of technology transfer.

In the discussion that followed, Boehm asked whether there
were consistent patterns in how designers organized informa-
tion. Shen responded that pictures were often used and that
80 percent wanted a word processing tool that integrated
graphics.

Dr. John Gaffney of IBM reported on a technology index de-
fined to quantify software quality and development produc-
tivity to determine the degree of using key software
procedures and techniques instituted in the late 1970s and
to determine how well the investment in these techniques has
paid off (A _Quantitative Analysis of the Impact of Modern

Software Engineering Techniques). Gaffney noted that the
data suggest that higher levels of productivity and lower

L. Jordan
CSC
9 of 19

error density are associated with higher levels of the tech-

nology index.

This software development process technology index is a num-
ber between 1 and 100. It was evaluated for a variety of
large projects totaling more than 3.8 MSLOC and signifies
the degree of 13 process and 2 educational attributes.
These attributes are inspections, structured programming,
structured design language, function model, state machine
model, structured specification language, unit testing, de-
velopment integration testing, function testing, systems
testing, performance and limit testing, user testing, and
management and nonmanagement technology education. Each
attribute was scored by assigning a number from 0 to 16 in-
dicating the degree of technical rigor and the extent of
use. The index value was then taken to be the normalized
sum of attribute scores.

Gaffney showed charts relating productivity and the index
(correlation coefficient +0.697), latent error content and
the index (correlation coefficient -0.582), and latent error
content and productivity (correlation coefficient -0.672).
He indicated that the index is useful in estimating the
likely effects of changes or improvements in technology on
productivity and quality, estimating the risk in applying
some element of technology, and validating estimates of de-
velopment costs. Empirically derived quantitative relation-
ships between the index and productivity and latent error
content can be used to validate estimates of these variables
obtained by other methods. These same relationships may
also be used for prediction to supplement the planning proc-
ess.

In summary, Gaffney said that the index is good for estima-

tion and planning and provides another "handle" on control-

ling software productivity and quality. In the discussion
L. Jordan

CSC
10 of 19

that followed, he said that the method was applied to dif-
ferent types of projects and not just to similar types. 1In
discussing how the measure captures a shift in technology
(e.g., a shift from FORTRAN to Ada), he said that it captures
the application of well-defined engineering processes such as
design, code inspections, and testing.

SESSION 3 - SOFTWARE ENVIRONMENTS

Session 3 was moderated by Mr. Keiji Tasaki of GSFC.
Mr. Eugene Spafford of the Georgia Institute of Technology
reported on a software testing environment (The Mothra Soft-

ware Testing Environment) consisting of an integrated set of

tools and interfaces that support the planning, definition,
preparation, execution, analysis, and evaluation of tests of
software systems. The Mothra system provides support from
unit testing through system and acceptance testing. Per-
sistent data are kept. The user interfaces provide a wide
variety of information and information representation (e.g.,
graphics, windowing, animation, and data compression). No
size constraints are imposed by the architecture on the size
of the software system that can be tested in the environ-
ment; comparable functions can thus be applied across a fa-
miliar interface as the software being tested evolves in
size and complexity. Development tools can be integrated
into the testing process, allowing the use of user and sys-
tem tools with which the tester is already familiar.

The environment provides three different aspects: views,
thematic tools, and "shifting gears." The view aspect pro-
vides a way of managing large tests. Displays are used as
the tester's view or window into a larger (virtual) test
context. The thematic tools aspect relies heavily on muta-
tion testing and uses different underlying sets of well-
understood and natural activities that proceed in a specific
sequence through several phases of testing. The shifting

L. Jordan
CSC
11 of 19

gears aspect provides the ability to capitalize on testing
at an appropriate level. Mothra will always spawn machine-
intensive tasks and organize them for execution by a com-
puter resource of appropriate power. In this way, a test
that is justified technically will always be performed un-

less overriding economic limitations prevail.

Mothra is a subenvironment that runs on top of a host envi-
ronment. Versions are operating on the VAX-11/780 and on
ULTRIX on VAX workstations. Explicit operations also allow
Mothra processes to spawn parallel and vectorized processes
for execution by a Cyber-205. 1In concluding, he said that
two versions have been implemented. An Ada capability has
been designed, and performance studies have been started.
In response to a question comparing mutation testing to
other methods, he noted that mutation testing was developed
about 1977 and that studies on large-scale COBOL and FORTRAN
projects have shown that mutation testing represents a good
testing method with few undetected errors.

Dr. Barry Boehm of TRW reported on the application of an
analytical method to components of the software production
process with the goal of improving software productivity (A
Chain Value Analysis of Software Productivity Components).

The method employs a value chain analysis that examines a
canonical set of cost sources or value activities that rep-
resent the basic activities an organization can choose from
to create added value for products.

Boehm presented a chain value analysis for the software de-
velopment process. Operations consists of management

(7 percent), quality assurance and configuration management
(5 percent), requirements analysis (4 percent plus 1 percent
rework), preliminary design (8 percent plus 3 percent re-
work), detailed design (10 percent plus 5 percent rework),
code and unit test (8 percent plus 8 percent rework), and

L. Jordan

CSC
12 of 19

integration and test (7 percent plus 13 percent rework).
Infrastructure consumes 8 percent; human resource manage-
ment, 3 percent (Boehm noted this is less that optimal given
the labor-intensive nature of software development); and
technology development, 3 percent (he noted that this is
also less than optimal as an investment to improve produc-
tivity and quality). The breakdown of the operations activ-
ity indicates that the leading strategies for cost savings
in software development involve making individual steps more
efficient (by automated aids to software requirements analy-
sis or testing), eliminating steps (by automatic programming
or quality assurance), and eliminating rework (by early de-
tection or rapid prototyping). He summarized these sources
of savings in a software productivity tree to show how the
various productivity options fit into an overall integrated
productivity improvement strategy.

Boehm noted that the results of a study of rework costs
using 1378 problem reports from two large projects indicated
that 80 percent of the rework cost typically results from
20 percent of the problems. The implication here is that
verification and validation should focus on identifying and
eliminating specific high-risk problems rather than spread-
ing early problem elimination effort uniformly across triv-
ial and severe problems. This implies that a risk-driven
approach to the life cycle, such as the spiral model, is
preferable to a document-driven approach, such as the tradi-
tional waterfall model, and would be a way of focusing on
the high-risk elements of development. In the ensuing dis-
cussion, he emphasized that risk driven versus document
driven does not mean that documentation is absent and that
there is no good way at present to estimate the cost of pro-
totyping.

Mr. Anthony Wasserman of IUE, Inc., reported on an inte-

grated set of tools based on an open, rather than a closed,

L. Jordan
CSC
13 of 19

architecture (The Open Architecture of the IDE Tool Environ-
ment). The open architecture is characterized by the avail-
ability of information about all arguments and options for

each tool (providing multilevel access to tools with separate

invocations for different levels), all interfaces (file for-
mats and data base schemas) so that other tools can build
upon those specific interfaces, and common standards (e.g.,
ASCII, Pic, or Postscript). The open architecture allows
user customization of the environment to support local op-
tions and preferences, allows the environment to be extended
by developers and users with minimal effect on the existing
data base, encourages the development of modest-sized soft-
ware components rather than large monolithic tool systems,
and provides multiple interfaces to the same functions to
provide appropriate support to different classes of users.
The tool set reported on is Software Through Pictures, a set
of graphical editors supporting methods for software analy-
sis and design, including structured systems analysis,
structured design, entity-relationship modeling, and user-
specified software engineering.

An effective way to present the user with a coherent view of
the environment is to organize tools and files by logical
level. The Unix system, for example, is organized in three
levels: commands, files, and libraries. At least four
levels should be present in an open architecture: the inte-
grated environment level (starting point for the user and
any global mechanisms needed by tools); tool levels (tools
calling tools, libraries, and utilities represent multiple
tool levels); data repository level (common repository of
data for the integrated tools of the environment, including
programs that manage the repository); and file interface
level (containing text files used by or produced by tools

L. Jordan
CSC
14 of 19

for use by other tools). Several examples of screens pro-
duced by Software Through Pictures transactions were pre-
sented. Wasserman showed how text editors could be used to
modify templates (e.g., substituting an Ada template for a
Pascal template).

In the discussion that followed, he indicated that the open-
ness is derived from the Unix shell structure. He also
stated that, even though the developer specifies the method-
ology, the user should be able to modify it by turning off
specific tool features. 1In response to a question asking
how this countered Fred Brooke's "no silver bullet" paper,
he noted that the idea behind this tool set is modeling and
communication and not the software itself.

SESSION 4 - SOFTWARE TESTING

Session 4 was moderated by Mr. Ed Seidewitz of GSFC.

Dr. John Knight of the University of Virginia reported on a
new approach to developing fault-tolerant software (Data
Diversity - A New Approach to Fault Tolerant Software). The
two best known techniques for developing fault-tolerant

software are n-version programming and recovery blocks.
Because both techniques rely on multiple implementations
and, presumably, different designs, these are characterized
by design diversity. A new approach relies on the observa-
tion that software often fails at a boundary point in the
input space. Programs may work well for many input values,
survive extensive testing, and then fail on an input case
related to some boundary condition, usually associated with
a transition in the processing algorithm. 1If, during test-
ing, the special failure case is not generated exactly, the
software usually works correctly. There is a strong impli-
cation that if software fails under certain execution condi-
tions, it is very likely that a minor perturbation of those

L. Jordan
CSC
15 of 19

execution conditions would allow the program to work. This
new approach is characterized by data diversity.

Knight defined a technique for investigating the character-
istics of failure regions in an input space that maps the
two-dimensional cross-section of the multidimensional input
space, indicating failure regions and boundary conditions.
He then presented several examples obtained from 27 programs
that had been subjected to one million test cases. He pro-

posed a method in which data are reexpressed algorithmically.

An algorithm is executed, and the output is tested. 1If the
output is found unacceptable, the data are reexpressed by
randomly choosing a point from a small circle with the ori-
ginal data point as center, and the algorithm is rerun. He
then showed the relative performance for different circle
radii with one, two, and three retries for several specific
faults in the failure region.

In concluding, Knight noted that some programs rely on the
relative placement of data. Data diversity is inexpensive,
relying on a single implementation of the program, and minor
costs are associated with reexpression and error detection.
Empirical study showed that performance varied widely, that
some faults were tolerated well and some faults not so well.
He noted that data diversity is not universally applicable.
Some data cannot be reexpressed, but in many instances, for
example, noisy control systems and inaccurate sensors, data
diversity should work well.

In the discussion that followed, Knight indicated that this
method should be regarded as a "safety net." That is, after
attempts have been made to eliminate design and other faults
and there is a need to "get through this fault now" during
operation, this method can be used to get the program out of
the fault region.

L. Jordan
CSC
16 of 19

B M E R EEEEn

Dr. Nancy Leveson of the University of California, Irvine,

reported on an evaluation of the recovery block approach to
testing in which self-tests (acceptance tests) are inserted
in the program (An Empirical Study of Error Detection using

Self-Test). She presented the preliminary results of an
experiment that examined the relative effectiveness of
self-test versus voting in detecting software errors. The
experiment used programs developed for a previous n-version
programming experiment that had been subjected to one mil-
lion test cases so that nearly all faults were known.

Graduate students inserted self-tests in eight programs.
Twenty faults were found, four by specification-based test-
ing and eight by code reading. Six new faults were found
that were not discovered in the one million test cases be-
cause intermediate results could be examined and not just
the final output. This is probably also attributable to the
fact that test case strategies could be employed that were
more comprehensive than just examining one output. Leveson
also noted that new faults were introduced by inserting the
self-tests. This is expected any time code is added to a

program.

In concluding, Leveson noted that large differences were ob-
served in individual programmer ability. Other questions
were raised, such as whether the original programmer would
have performed better because of more extensive knowledge of
the software. It appeared that the placement of checks was
important and that specification-based checks alone were not
as effective as using them with code-based checks. Proced-
ures are needed to help formulate checks. No current
fault-tolerant methods guarantee ultra-high software relia-
bility. Current plans for future work include comparing
fault-tolerant and fault-elimination methods, studying the
efficiency of self-checks written by the original coder, and

comparing clean-room and traditional development methods.

L. Jordan
CSC
17 of 19

Dr. Amrit Goel of Syracuse University presented the results
of a study to assess the comparative reliability of Ada and
FORTRAN programs using the number of distinct errors found

as the key reliability measure (An Experimental Comparison
of Ada and FORTRAN Program Reliability). A comparison was

also made between intermediate-level and experienced pro-
grammers. Two versions in each language were developed by
intermediate-level programmers, and one version in Ada was
developed by an experienced programmer. The number of er-
rors found during compilation and unit testing were re-
corded. After removing errors found during compilation,
each version was tested with 54 test cases developed by
using a hybrid functional/structural testing methodology
based on one Ada program. Errors detected by the 54 test
cases were removed, one at a time, and the remaining test
cases were run on the incrementally corrected programs.

In presenting the results, Goel noted that the plots of
cumulative error symptoms versus test case number seemed to
follow homogeneous Poisson processes. There were approxi-
mately 70 percent more errors in the FORTRAN programs than
in the Ada programs (written by intermediate-level program-
mers). The Ada version written by the experienced program-
mer had half as many errors as those written by the
intermediate-level programmers. Another set of 120 test
cases was generated using the same testing philosophy as
before, except that they were based on the structure and
code of a FORTRAN version. Results were similar, with a few
additional errors found. An additional 1000 random test
cases were run that detected nine new errors in the five
programs. In concluding, Goel indicated that the Ada
programs seem to be much more reliable than FORTRAN and
that, on the average, the Ada programs had 7 percent fewer
errors.

L. Jordan
CSC
18 of 19

NN N EEEEEEEREEBENENNNN N

In the discussion that followed, he noted that the program-
mers chose the program design methods, that the methods were
not systematic, that they seemed more oriented to data flow,
and that Ada features were not exploited. The differences
in reliability seemed to be the result of the Ada compiler
catching several typical FORTRAN errors that survived compi-
lation. 1In response to a question asking how the results
might differ by using Pascal, Goel said that a version was
also written in Pascal, C, and APL. He conjectured that the
figure would be 20 percent more errors in the Pascal program
than in the Ada program (compared to 70 percent more for the
FORTRAN program).

L. Jordan
CSC
19 of 19

PANEL #1

RESEARCH IN THE SOFTWARE ENGINEERING LABORATORY
(SEL)

F. McGarry, NASA/GSFC
V. Basili, University of Maryland/M. Zelkowitz, University of Maryland
B. Agresti, Computer Sciences Corporation

Determining Softwere Productivity Leverage Factcrs in the SEL

Frank McGarry
Susan Voltz
Jon Valett

Abstract

For any organization responsible for the cevelopment of software
systems, & typical ongoing gozl is the attempt to improve the
develcpment process whereby the cost effectiveness of the software
inproves. To this end, nunerous tools, methods, models, management
techniques, development lenguages, etc. have been developed and are
evolving. Yet to effectively utilize available techniques, a
development organization must first determine what facets of the
development process would be most conducive to change by determining
what characteristics of the current development process are causing
the most difficulty and thereby should be addressed with modified
approaches. In other words, a development organization must determine
what aspects of the current development process may provide the
greatest leverage (currently consuming high amounts of resources) to a
modified approcach to the develcpment process.

The Software Engineering Laboratory (SEL), in its attenpt to
assess the relative nerits of various development techniques, has made
efforts to quantitetively determine what charascteristics of the
development process, within one local environment, would provide the
most potential for iniproving the overall development effort. By
applying appropriate techniques to the identified areas, it is assumed
that the most effective adjustment would be made.

To this end, the SEL has compared characteristics of the
development process in early phases of the overall SEL study process
(1978-1981) with the characteristics of nore recent efforts (1984-
1686) to determine:

1. What leverzge points exist?

2. Has the application of selected techniques
affected the profile of the developuent effort?

3. Has the developrnent process improved?

This paper describes what leverage factors have been determined and
how these factors have changed cver 8§ yeers.

F. McGarry
NASA/GSFC
1 of 22

1.0 Background

In 1977, the Software Engineering Laboratory (SEL) of NASA/GSFC
began studying the characteristics of the software development process
within the flight dynamics environment at Goddard. The SEL is
organized as a partnership between NASA/GSFC, the University of MD,
and Computer Sciences Corporation [1]. Each organization has been an
integral part of the study effort from the inception cof the SEL.

The approach taken to studying procduction software projects has
included collecting detailed software development deta from numercus
projects as each of the projects utilized specific techniques in the
software development effort.

1.1 Study Process (Chart 1)

The 3 step process to which the SEL approached the overall
studies includes:

1. Determine the basic characteristics of the development
process in the procduction environment (productivity, life
cycle effort distributions, error rate, methods used,
etc.). This step identifies the potential 'Productivity
Leverage Factors'.

2. Apply modified development epproaches to similar
cevelopment projects (new tools, languages, methodologies,
etc.) and extract detaziled informaticn on the development
process.

3.Compare and assess the impact of zpplying the modified
approach by observing changes to the measures of
interest (e.g. productivity).

1.2 Projects Studiecd (Charts 2 and 3)

In carrying out the approach to both identifying the leverage
factors and measuring the effect of available software development
approaches, the SEL has utilized over 50 flight dynamics development
projects at NASA/GSFC for detailed study. Detailecd developmnent data
has been collected from each of these projects while numerous
development methods, tools, etc. have been selectively applied to
these projects. Several generzl results from the technology

evaluation efforts were reported at the 10th Software Engineering
Workshop in 1985 [2].

One approach that was utilized by the SEL in it's attempt to
measure softwzre techniques, was to define a 'Technology Index' [3]
which was based on the level or extent to which known disciplined
methods were applied to each project. This index characterizes the
use of over 60 methods in developing the software and essentially is
one organizetion's attempt at defining the level of discipline applied
to the effort.

F. McGarry
NASA/GSFC
2 of 22

Based on 14 projects of similar size and conplexity, one of the
points the SEL reported was that it could not show a significant
correlation between productivity and the 'technolcgy index's but it
did show a very high correlation between reliability (errors/SLOC)
and technology index. These relationships were not trends over time,
but only over level of applied technology. The conclusion is not that
a more disciplined approach fails to improve productivity. The result
merely states that for the SEL definition of 'technology index', no
measurable improvement in procuctivity was apparent in the statistics
from the sanpled projects. This could rossibly indicate:

1. The particular methods defined are not mezsurable to the
gegree required.

2. The technique was not applied correctly by the
development team.

3. The technique studied was not appropriate for the
environment used.

Another view of these projects was to look at the trends of
measures of importance over tirne.

2.0 Leverzge Fazctors, 1978-1981 (Chart 4)

By studying these projects, the SEL has additionally attempted to
determine what specific elements of the software development process
were affected over time by efforts made to improve key factors such as
productivity and reliability. That is, if procductivity was improving,
where was the gezin made (faster ccders? less design required? less
testing?)? The SEL had put effort into developing profiles of early
projects so that specific weaknesses could be icentified and
addressed. Although one of the goals of the SEL has been to measure
the impact cf specific scftware techniques, the end goal is to
identify key leverage factors, then apply appropriate techniques to
gain nieximum improvement to the software as measured by some parameter
of interest (e.g. productivity). Several interesting points of the
cgevelopment projects which were studied in the early time period
(1978-1981) are noteworthy.

2.1 Distribution of Develcpment Effort (Chart 5)

The detziled data from these earlier projects showed some
statistics that were expected or not at all unusual while some of
these figures have lead the SEL to concentrate more or less oncertain
aspects for iwproving softwzre cost effectiveness. The distribution
of manpower effort over the life cycle of development (beginning at
requirernients analysis and ending with completion of acceptance
testing) has shown a fairly even distribution between design (27%),
coding (25%) and testing (28%) with 'other' (which includes meetings,
trazvel, training, etc.) acccunting for zbout 20%. Of the 25% devoted
to the coding phese approximately 15% was actually attributec to the
writing or entering of code. This point has led the SEL tc temper its
efforts at concentrating on improving the 'cocing' process since the
'leverage' gained frowm improvement here may ve relatively limitec.

F. McGarry
NASA/GSFC
3 of 22

A second point worth noting, is that when the SEL analyzed the
effort attributed to changing and fixing software during the
cevelopmnent process, (because cf incorrect designs thet had to be
changed, or errors that were createc during the design or code phase,
or because of changing or misinterpreted requirements leading to
changes in design or code) it found that approximately U4C% of the
total manpower spent curing development was attributed tc this
'revwork' effort.

This effort ¢ata was based on 3 projects that had very good
historical infornation during the earlier tineframe of 1978-1981.
Dats sources included:

o SEL change/error reports
¢ Specification change reports
o Change histories c¢f on- line source code

By studying in detail representative changes, it was found that the

averzge change to coce required approximately 1/4 of & persons day and

the average change ceused by a design or spec change required
approximately 1/2 of &« person day. Data for planned enhsncemerts or
planned changes were not included in the computation.

Several other potential leverage factors were identified by
analyzing this early data:

1. Approximeately 30% c¢f the totel development effort was
spent on testing. If this process could be made more
efficient, there was potential fcr improvecd cost

effectiveness. Testing included unit tests, systems tests
anc acceptance tests. Although many people consider coce

reading to be a form of testing, this 30% value, did not
include that particular effort.

2. In the 1678-1981 time frame, developers spent nearly 50%
of their time documenting. This effort includes writing
such documents as design descriptions, test plans,
user's guides, system description and code commentary.
The value was approximated by coniputing a page count of
docunients produced for each project studied &and

developing an average time per page by examining deteiled

records of the project development data and by observing
and interviewing authors. The figures used included:

o 2 person hours per page of documentation,

o 3 person minutes per line of code commentary.

To the figures, the total 'tech publication' charges
and secretary charges were added.

F. McGarry
NASA/GSFC
4 of 22

3. In looking at detailed history of the M & O phase of
delivered software, it was found that the error rate was
approximately 0.6 errors/1000 SLOC. This error rate has
been ceened to be highly acceptable for this environment.
For this reason, nc concentrated or extended efforts
woulo be put forth in attempting to improve the
reliability of the delivered software. Therefore, the
reliability of delivered software was not targeted as a
major leverage factor in trying to improve the
developnent process.

2.2 Early (1981) Approach to Quality Improvenent (Chart 6)

Once the SEL studied in detzil the softwere development profiles
of projects developed in the 1978-19€1 timeframe, three general goals
for improving the software process were developed:

1. Increase efficiency of the develornent process: Two of
the major manpower consuners had been identified as
testing (30%) and documentation (40%). By identifying
methods, tools and approaches that could possibly
increase efficiency in these areas, as well a&as increase
efficiency throughout all the development phases, there
was potential for improving the cost effectiveness of the
overall process.

2. Decrease Rewcrk: Since its incepticn, the SEL has
conducted numerous studies on the nature and cause of
software errors (ref. 4, 5, 6) and changes during the
develcpment process. By isoleting characteristics and
general causes that may be major drivers for rework
effort, the SEL has anticipsted thzt appropriate methods
and effective tools could address this major leverage
factor., Past studies have shown thet neither syntax
errors (<3% of total errors) nor errors in software
specification (<5%) were major problem areas, but software
design errors and interfzce errors were major
contributors to the errors in the flight dynamics systems.
As a follow-up to the studies of software errors, the SEL
has conducted additional experiments with several methods
anc approaches that could petentially address the types
of errors created. These studies have included:

0 Study of Software Verification Techniques
(4]

0 Characteristics of Software Prototyping
(5]

0 Assessment cf an Independent V & V techniques
[6]

F. McGarry
NASA/GSFC
5 of 22

3. Sustzin High Quality of Delivered Systems: Although
original studies showed that GSFC was not spending &n
appreciable effort in the maintensnce/error fixing process
for the delivered system, (therefore not a major leverage
fector) it has been a goal, that by continually utilizing
and improving the development process, the developed
system should sustain the high level of reliasbility that
had been measurec originally. Therefore the religbility of
delivered softwere would continue to be used as a measure
of the effectiveness of rnodified approaches to software
cdevelopment; but improved reliability of delivered
software was not defined as a major point of concern for
the original SEL efforts.

3.0 Recent Trends in Productivity and Reliability (Chert 7)

In attempting to interpret recent trends of software developuent
effectiveness, the SEL has studied two key factors, productivity
(LOC/day) and reliability (errors/KLOC), over the past 7 or & years as
efforts were put forth in experimenting and applying techniques
directed at gaining leverage from kKey places in the cdevelcpnent
process. In determining the productivity anc¢ reliability trends, 6
projects of similar complexity and size, which were developed over the
8 year perioc (1978-1986), were studied. The data showed that
productivity first decreased for several years then continually
increased over the past 6 years.

The reliability of the developed systems has also continually
improved, where the particular measure is computed as the number of
errors per KLOC found from syster testing through acceptance testing.
This error rate is a strong indication c¢f the amount of rework that
would be necessary during the development process. The rate has
decrease from 7 or 8 errors per 1000 SLOC to under 6 errors per 1000
SLOC. The error rate reported during maintenance also has shown a
slight improvement.

In looking at the trends over the 8 year period, the SEL is still
attenpting to ascertain why the productivity of systems in the 1978-
1980 time frame was extrenely high as compared to systenis built in the
1981-1983 time frame. Two explanations are being pursued as possible
drivers:

1. High availability of experienced people, Between
1978 and 1980, six major flight dynamics general
systemns were completed. This unusually high

nurnber assured a large number of experienced people
were available for the efforts and as one system
Was hearing completion, the wealth of experiences

and expertise could be shared on newer efforts.

F. McGarry
NASA/GSFC
6 of 22

2. Strong Iraining in Development Methodologies, Early in
the SEL study efforts, many of the project personnel were
put through specific formal methodology training in
prepration fcr the measurement of such technolcgies as
structured programming. Additionally, senior staff
members continually reinforced this training during the
development process and worked closely with development
personnel to assure that developmnent methods were
understood and were being utilized. Some SEL researchers
feel in later years, the strong reinforcement of training
had decreased, possibly leading to lower productivity.

3.1 Revised Leverage Factors, 1984-1986 (Chart 8)

Fcllowing the analysis of software developrnient profiles of an
early timeframe (1978-1982) and the identification of potentizal
leverage factors for that era, the SEL then compared results to those
of a more recent timeframe (1984-1986). The goal of this comparison
was to determine how the identified leverage factors have changed over
time and to identify new leverage factors for improving the software
development process in the future. The results of this comparison
identified changes in the distribution of development effort in three
areas:

1. EKework: Effort zttributed to changing and fixing
software during the developrnent process has decreased in
recent years. Since this effort, however, remains a
significant percentage of the tctal development effort
(25%-35%), rework continues to be a key leverage factor
in improving the software developmert process.

2. Documenting: Recent years have shown a decrezse in
effort related to writing softwere development documents
and code commentary from over 45% in the earlier
timefrane studied, to 35% of the tctal develcpment effort
in the recent timeframe. The decrease in documenting
effort may be attributec to the production of fewer
repetitive documents during the software development
process or the higher user c¢f support tools for
developing documients, Through experience and the
development of similar software systems over the past
years, the understanding of what documents are essential
to the developnient process has become more clear.

3. Coding: Effort inveolved in coding software has decrezsed
slightly over the past few years. Coding effort remzins
a small percentage of the total developuent effort and
may not be lowered much further. Therefore, improvement
efforts in the area of software coding would not provide
much leverage in irniproving the overzll development process.

F. McGarry
NASA/GSFC
7 of 22

In addition to a decrease in rework, cocumenting, and coding
efforts, the SEL discovered a recent increzse in the percentage of
code reused in the development proccess. This favorable increase nay
be attributed to an increased awareness of code reuse as a key
leverage factor., However, given the homogeneity of the development
environment studied by the SEL, code .reuse is still relatively low.
Therefore, code reuse remains an important leverage factor for
improving the cost effectiveness of the software development process
within this organizaticn.

3.1.1 Software Development Environment (Charts 9 & 10)

An additional area in which leverage may be gained in improving
the development process may include the use of softwezre development
environments. The SEL discovered that many of the tocls available to
the developers to aid in the software developnent process, were not
being used as heavily as anticipated. Recent studies in the SEL,
however, have shown that increased tool usage has a positive impact
both on productivity and on the maintainability of development
projects (ref. 7). Therefcre, the SEL has begun to encourage the use
of a development environment known as the Software Development
Environment (SDE). SDE is a menu-driven, integrated set of
development tools intended to aid developers in the IBM environment.
SDE encourages the methodology deemed to be effective in its
production environment and will hopefully increase the use of
development tools.

3.1.2 Environment Experiment

As a first experiment with SDE, the SEL has compared effort and
error data of two development projects, one developed under SDE and
one not, to analyze the impact of this development environment,
Preliminary results show that productivity and reliability of the
software developed using SDE significantly improved over the system
developec¢ without SDE. 1In addition, a user-survey incicated that
users of SDE, particularly newer developers, felt software quality
improved by using SDE. These preliminary results indicate to the SEL
that further work in environments could be an important leverage
factor of the future.

3.2 Revised (1986) Approach to Quality Improvement (Chart 11)

In studying and comparing the recent software development profile
to that of an earlier development era, the SEL has identified areas in
which the development environment studied could most benefit from
improvement efforts. The revised target leverage factors address the
following goals:

F. McGarry
NASA/GSFC
8 of 22

1. Reduce ithe size of developed systems in order to increase
the reuse of existing software. The approach to
attaining the highest software reuse potential may
include selecting and applying approrriate tools,
methodologies, or languages that promote the reuse of
software (e.g. Ada).

2. Decrease the effort attributed to rework in order to
further decrease the amount of time spent chenging and
fixing software errors. Although the percentage of
rework effort has declined recently in the studied
environment, continued emphasis on this leverage factor
could produce a gain in productivity and reliability.
Possible approaches to meeting this particuler goal may
include improving design methodologies, prototyping, and
utilizing testing aids.

3. Further increase the overall efficiency of the
development process in order to decrease the dependency
on people and experience in software development. In
order to more easily learn from past cevelopment and
management experience, however, developmnent and
menagenient environnents could be utilized, as well as
expert systems that capture devclopers' or managers'
expertise,

By concentrating on the revised leverzge factors targeted by
the SEL, an improvement in the cost and quality of developed
software could be realized in the near future.

F. McGarry
NASA/GSFC
9 of 22

REFERENCES

1. Software Engineering Laboratory, SEL €1-104, The Software

Engineering Laboratory, D. N. Card, F. E. McGarry, G. Page, et.
al, February 1982.

2. McGarry, F., 'Studies and Experiments in fthe Software
Engineering Lab (SEL)'s Proceedings cf the Tenth Annual Software
Engineering Workshop, Decenber 1685,

3. SEL 86-002, Measuring and Evaluating Software Technology, D.
N. Card, F. E. McGarry, J. Valett, to be published.

4, SEL 85-001, Comparison of Software Verification Technigues.,
D. Card, R. Selby, F. E. McGarry, et. al, April 1985,

5. SEL 86-004, Collected Software Engineering Papers: Volume IV,
November 1686.

6. SEL 81-110, Evaluation of an Independent Verification and

Validation (IV&V) Methodology for Elight Dynamics, G. Page, F. E.
McGarry, and D. N. Carc, June 1985,

7. McGarry, F.; Valett, J.; and Hall, D., 'Measuring the Impact
of Computer Resource Quality on the Software Development Process
and Product's Proceedings of the Hawaiian Internztional
Conference on Systems Sciences, January 1985.

F. McGarry
NASA/GSFC
10 of 22

\

THE VIEWGRAPH MATERIALS
FOR THE

FRANK McGARRY PRESENTATION FOLLOW

73S 3HL NI SHOL1OVd 3OVH3IATT
ALIALLONAOHd FHVMLH40S GZ_Z_S_m_m._.mD

F. McGarry
NASA/GSFC

11 of 22

9861 ‘€ H39IN3O3d

dOHSHMHOM
ONIHI3ANIONT JHVYML40S

TVNANNY HLN3A313

‘1 2an3iq

200'8s8

(HONW

MOH A8 GNV d13H SaNO HOIHM) NOILS3NDO NI
S3IDOTONHOIL 40 SS3INIAILO3443 ININYILSA -

(S1D3roHd HVIINIS) NOILSIND NI STHOVOHddY
ONISN LON HO DNISN 40 S103443 IUVdWOO - SIDOTONHOIL

NOLLYNTVA3 HO4 S3HNSV3IN 3NI43aA - SS3SSVY HO/ANV LOVdNI JHNSVIN e

v.iva INIWdOT13A3A a31Ivi3d LOvHLXd -

SWVHDOHd SNOILYOIddY
Ol (S100L ANV ‘ST3AOW ‘SAOHL3W) S3ID0T1ONHOIL
SIIDOTONHDI3L SNOIHVA AlddV - d3S0d0oHd HLIM INIWIHIAX3 e

SHOLOV4 39VHIAI1 TVILNILOd ININHI13A -
Viva INIWdOT13A3A a31Ivi3a 1OvHLIX3 - IN3WNOHIANS 40 311308d dO13A30 @

SNOILVYII1ddV VSVYN
:INJWNOHIANT NOILONAOHd NI SLNIWIH3JX3 IHVMLIHI0S

%
SHOLOV4 IOVHIAZT INI43A OL S1HOL43 13S

F. McGarry
NASA/GSFC
12 of 22

7 AIndry

F. McGarry
NASA/GSFC
13 of 22

8
i

ST13AOW 3IOHNOSIH/LSOD -
d3d013A3A S301L0VHd INFWIADVYNVI -
d3dO13A3A SAYVANVLS -
a3NI43a S100L -
(SLNIWIHIJX3 NI d3SN) AIHOLINOW 001 NOITIIW € HIAO e
d3"NSVIW SIIDOTONHOIL LHV - 3HL - 40 - 3LVLS 0S HIAO e

S30110vHdd
INJNdOT3AIA JHYMLIJOS HOL SISvd SY d3SN S1INS3IY e

d31aN.ts S103ro4dd 9S e
!

(9861 - 2261)
S3IANLS ADOTONHDIL JHYMLAOS

~
U e~
‘¢ am3ryg SO
=5%
00958 - ANn <
(ENIL HIAO) @3SS3HAAVY SLNIWIAOHINI ALIAILONAOHd 3H3IM MOH
ALIAILDONAOHd Q3AOHJWI 3DVvsSN 1001 Q3aSVY3IHONI '€
AN ADOTONHO3L, Ol G31vi3d 38 OL1 NMOHS 3H3IM SINIW3IAOHCNI ALTgvIin3y ¢
X3ANI ADOTONHO3 L, HLIM 3SV3HONI OL NMOHS 38 LON @1N0D ALIAILONAOHG |
X3AaNI ADOTONHO3L V101l X3aNI ADOTONHO3L V10l
ovL ocl 0,018 08 03 ovi oclt 0]0]1 08 09
T] T _ ! 0 T ! 1 ™ 0
. _ [[J ®
° ¢80 =4 200°0 o *o¢
-
-n D
000 2= oo _jcg O
c o o
- :
OOOO W @ — O¢ “_
> Z
m .
800°0 . PY ° — Sy
0LO0 0’S

ADOTONHO3 L, ININJOT3IAIA 40 103443

l

G8/¢l d31H0d3d SLINS3YH 13S

b oIn3iyg

F. McGarry
NASA/GSFC
15 of 22

S00'898

1d40ayv - ANI43Y - JUNSVIN - A1ddY '€

Ol3 e
SAOHL13INW e
S71001

ONIAOHdNI HOd SQOHL3IN JLVIHdOHddY ININYILIA 2

¢ A3AOHdWI 39 dT1NOD LYHM e
¢ SW3T904Hd SISNVD LVHM @
¢ $8 AN3IJS IM O IHIHM @

S1NIOd 3OVHIAIT IVILNILOd A4ILNIQl °|

/

NOILONAOHd WS AIAOHdINI OL HOVYOHddY

. BN W A I A N I I I B N B O B O I & I
=7
E»
‘¢ amsiy GON
27
900858 xS
%82
ONLS3L
avadw/M3A3d
%01
3000 ILuUM
%S1L
M/S 318vN3Y 40 AH3AIN3A INNILNOD '€
901S 0004 /SHOHH3 8° MWS TVNOLLYHIdO NI 31V HOHHI e a34IND3H YHOM3Y 3SVY3HD3a 2
ONIXI/ONIONVHD NO IN3dS 140443 %07 AT3LVINIXOHddV @

%SL> 3000 ¢

9%05-G€ NOILVINIWNOOQA e
%0€ DNILSIL o AON3IOI443 INSWJOT3A3A 3SV3HONI '}

SNOILYAH3SE0 3WOS

(1861-8261) SLNIOd IOVHIAIT TVILNILOd A3IdILNIAI

3
§4q
"9 amdig oL
=55
£008s0 H- M =
* d3H Ol L
stacon » (sivam oL wouss. soveany)
S3IHUNSY3W ¢
ABAN o ALIXETdNOD WILSAS 3SV3HO3Q o SW3I1SAS Q343A13a 40
ddi @ MWS @343AN3A NO 31VH HOHYI IZINININ ® ALTVND HOIH NIVLSNS

%E> SHOHYI XVINAS

° %S> SHOUHI NOILYOIFIDIdS @
ABA @
. (N
S3NDINHOAL G3HNLONYLS @ NH3ONOD 0 LON)
S3IHOVOHdJY ONILSAL @ (0314O0d3Y %2L) SHOWHI 3OVIHILINI LND e
ONIdALOLOHd ® (@31HOJd3H %S2) SHOHHI NDIS3a 1ND e MYHOM3H 3SV3HO3a

S3UNSVYIW/STIAON o
§1001 A3LVHNOLNY e

ONIQV3H 3000 o SS3NIALLOIJS3 INIWIDVNVIN o
S3IHOVOUdJJV ONLLS3L NOLLNGIYLSIA LHO343 IZINILDO @
S3NOINHOAL SIHNLONULS @ SS3N3IALLD3J43 ONILSAL IZINILJO e AON3I01343 3SV3HONI
SWSINVHO3IN JNOS S139HV1 INOS V0D

INIWNIAOHAINI «ALITVND, OL HOVOHddVY

L 2Ingiq

F. McGarry
NASA/GSFC
18 of 22

ALXTTSNOD GNV 3ZIS HYTINIS 40 S1O3r0Hd 9 NO G3SV8 » 800°658

QOIH3d HV3A 2 ONIHNG G3LITdWOD S103r0Hd HOIvA 8
SINOINHOIL DNIHIINIONI WS NI ONINIVHL TWAHO4 \/

001S WSHOUYI §> 31VH HOHYI 3ONINIVLNIVA - WS G3H3AIN3A 40 ALNVND
Q3SY3HO3A SHOHYI IOV4HILINI ANV NDIS3Q - XHOM3Y

3AILO3443 SHON S1HO443 ONILS3L
T19V.LS JHOW LNIWIDVYNVW/ONINNYID - AON3IOIH43

HV3A Hv3A

88 12°] (4] 08 8L g8 12°] c8 08 U 8L
1 l i | | 1 | !

3
3 @
- ¥ w w
4% g
/) % ° z
e— 8 % e~ 0¢
(3DONVLd300V HONOYHL 31vH HOYH3 ALIAILONAQOYHd

1

SHVIA 8 H3IAO +SAN3HL

'g gy

F. McGarry
NASA/GSFC
19 of 22

200850

3SN3H
3000 30090 ONIINTWNDO0A MHOM3H

A A

1HO443 INIWJOT13A3A 40 %

98 - ¥861 SLO3rOHd =[]
28 - 846} S1O3roHd = 3

0S

S1HO443 LNJINIAOHdNI ALITVND WS 40 S1OVdINI 3INOS

‘6 2Indrg

F. McGarry
NASA/GSFC
20 of 22

600858

S31ANLS 40 10NA0Hd-AG A3X IHIM SAIV INIFJWIOVNVIA e
SHOLOV4 H3IH1O WOHL FTEVNIVLLY A19v804dd 3OVHIAT1 JHOW e

¢379VHNSY3IN '€
¢ATLO3HHOD a3anddv 't
(ONINIVHL/A30HOLNITYH ¢

A3dOH NVHL 1OVdWI SS31 3aVN .S3ID0TOA0HL3W. A31dNLs e

W37904Hd HLIM 3ON3IH3dX3 44V1S ¢
ONINIVHL '}

IAISSTIHANI ALIALLONAOYd 40 13A31 HOIH (64.-82,) ATdV3 e
A3aLVdIDIINY SV ATIAVAH SY d3Sn LON S100L 18V IIVAY e

k

SNOILYAH3SHO TVNOILIdaVv

‘01 aInsiyg

F. McGarry
NASA/GSFC
21 of 22

L00'8SD

ONISINOYd ATHOIH SLNJWNOHIANT NI YHOM H3H1HNAd

SH3dOT3IAIA AINOSVIS NVHL
G3ISNHLN3 FHOW (3ON3IH3dX3 "SHA v>) SHIJOTIAIA HIMIN @

MWS 40 ALNVYND d3d13H 3AS 17134 d3770d SH3SN TV @
Q3AOHdI ATLNVOILINDIS ALTIGVIT3Y ANV ALIAILONAOYHd @

(LON I /ONISN 1D3rodd +) 3as DNISN LNIWIHIJXT LSHIH e

"ST100L St - 2} Ol 30V4H3LNI
= ADOTOAOHLINW a3ndiN - INN NOWIWOO - 3AILNDIX3 TOHINOD

S100L INJWNdO13A3A 40 13S d31VvHDILNl e

(3Aas) INTFWNOHIANT INIWJOTIAIA TJHYMLHOS
g

13S JHL NI 3DVSN 7001 DNIDVYHNOINI

11 2andig

F. McGarry
NASA/GSFC
22 of 22

€10'858

QTNOHS 3IM SY

1HOddNS INIJWIDVYNVI 1Svd SV 3ON3143dX3

HO4 .SWILSAS 1H3dX3. WOH4 ONINHV3T. LON

ONINIVHL TYWHOA © IN3AN3d3d 3ONIIHIAXI.
SIN3INNOHIANT e ANV 31d03d AH3A TS ADN3IDI443 SS3D0Hd ISVY3HONI

SAlv 1S3L ® pNjxid HOHHI ANV SIONVHO
ONIJALOLOHd NO %52 ONIAN3dS TIILS MYHOM3Y JLYNINMI

SIOVNONVT AHVHE e

vav e Q3NIVLLY ONi3g LON
.35N3H. HO4 S100L ® 3SA3H W/S TVIINILOd SWILSAS 340713A3A 40 3ZIS 1ND
HOvOouddv AHM Voo

E

SHOL1OV4 3OVHIAI1 L3DHVL (9861) A3SIA3Y

TAME - Tailoring A Measurement Environment

Viector R. Basili and H. Dieter Rombach
Dept. of Computer Science
University of Maryland
College Park, MD 20742

More and more project environments suffer from lack of sound knowledge concerning the
impact of software process and product characteristics on software quality and productivity. Such
knowledge would be important for (1) designing the software process appropriate for achieving
particular quality and productivity goals in a given project environment, (2) controlling the
fulfillment of given quality and productivity goals throughout the development process based
upon quantitative data (as far as possible), (3) providing proper feedback into the ongoing project
allowing to take actions where necessary, and (4) allowing post-mortem evaluation of projects for
the purpose of learning for the next projects. All these activities depend on sound data collection,
validation, and evaluation procedures. This need becomes especially obvious in the current situa-
tion of many environments making the transition form traditional languages and related metho-
dologies to Ada and supporting methodologies. In this context, many open questions need to be
answered, e.g., whether or not Ada language features and concepts are used appropriately, and
how Ada projects should be managed and supported by methods and tools.

For all stated reasons it is necessary to measure and evaluate the quality and productivity
of process and product aspects of projects. This can be done by either conducting case studies of
ongoing Ada projects or experiments in controlled environments. In both cases concrete measure-
ment and evaluation goals need to be established in a systematic way, measures need to be
derived that can help in achieving these goals, and the necessary data need to be collected, vali-
dated and interpreted. We have established a methodology that allows us to perform these activi-
ties in a systematic way. However, the methodology must be supported by automated tools in
order to allow on-line feedback of evaluation results back into ongoing projects. In the long-run,
the tools for on-line feedback should be part of each Software Development Environment (SDE),
since these environments should provide information to management, development, quality
assurance personnel, and others, supporting their decision making processes. Such information
would be based on data from the project of interest as well as from previous projects in the same
and other environments.

In this paper we present and discuss the TAME (Tailoring A Measurement Environment)
project which aims at the development of a prototype measurement and evaluation environment
that supports all the previously mentioned activities including the process of setting up measure-
ment and evaluation goals and deriving measures. The prototype currently under development
does not interface with an SDE; however, it is designed for being integrated into an SDE in the
future. The long-term goal of the TAME project is, however, to come up with guidelines for
designing SDEs of the future. We do not believe that evaluation can simply be added to existing
SDEs. We believe that SDEs of the future will be driven by TAME-like features allowing for the
tailoring of the appropriate software process to project goals and environment characteristics, set-
ting up of measurement and evaluation milestones, and establishing feedback lines. Once the
appropriate software process is selected, state-of-the-art tools for performing defined activities
such as requirements analysis, design, coding, testing, etc. will be plugged in depending they can
provide for the data asked for by the defined process model.

The TAME prototype provides means for collecting, storing, and validating data, computing
measures, and interpreting computed values in the context of particular evaluation goals.

A macroscopic view of the TAME architecture shows the system divided into four hierarchi-
cally organized layers (from top to bottom): (1) the user interface level, (2) the evaluation level,
(3) the measurement level, and (4) the data repository level.

V. Basili

Univ. of Maryland

I of 24

1. The User Interface Level supports the interaction between users and TAME. The TAME proto-
type will provide a menu driven user interface. In addition, the user interface level contains a
tool for setting up the individual measurement and evaluation goals, questions, and measures
for each user.

2. The Evaluation Level implements the appropriate context for a particular evaluation session,
and contains a processor for running evaluation sessions. The processor performs the evaluation
according to the particular needs of the user reflected by a specific set of goals, questions, and
measures previously created by the user interface level. In addition, the evaluation processor
needs to know the specific authorizations of the user in order to know which functions can be
performed by this particular user. The processor also provides analysis functions which, i.e.,
tell the user whether certain measures can be computed based upon the data currently available
in the data repository. This analysis feature of the processor is used during the creation phase
of goals, questions, and measures, as well as during the actual evaluation phase according to
previously established goals, questions, and measures.

3. The Measurement Level consists of tools for computing measures. The first measurement tools
under development are for determining static source code characteristics, data bindings, and
structural test coverage. This level is the only level truly dependent on the concepts and
languages used for documenting requirements, designs, code, etc. For example in the case of
Ada, due to the variety of new language concepts, such as generics, packages, tasks, and excep-
tion handling, terms like ’module’ or ’data binding’ have to be redefined.

4. The Data Repository Level provides the infrastructure for various types of evaluation. This
level allows storing and retrieving all kinds of software related data, including evaluation goals,
questions, and measures, and authorization data. This level should be as independent as possi-
ble of a particular data base management system or a concrete data base structure. It should
be implemented as an abstract data type hiding all these implementation details. This data
base is designed for all types of information accumulated in Ada projects, not just the informa-
tion created by measurement and evaluation tools. It also should be capable of interfacing to an
existing SDE. From this point of view, this data repository might evolve into a prototype SDE
data repository.

The TAME project status is currently as follows: The architectural design of TAME is com-
pleted and prototypes of three measurement tools as well as the data repository and the user
interface and evaluation level are being implemented. The TAME prototype is to be implemented
in Ada (as far as the measurement level is concerned, because we are aiming at Ada projects with
this first prototype) and C (for all other, language-indepedent, levels). TAME will run on a distri-
buted environment, work stations will host instantiations of the user interface level, a main-frame
will host all the other levels. Currently we are using SUNs (SUN-3/UNIX) and a MicroVAX/VMS.

The Tame prototype stand alone will provide a useful vehicle for investigating Ada related
research questions. Integrated into an SDE, it might allow on-line feedback into ongoing Ada pro-
jects.

V. Basili
Univ. of Maryland
2 of 24

TAME

i ':Us_:ervfInterface Level

[

 Measurement Level

Y Y

V. Basili
Univ. of Maryland
3 of 24

A Comparative Evaluation of Methodologies for Developing
Expert Systems to Aid in Software Engineering Management *

Connie Loggia Ramsey and Victor R. Basili
University of Maryland

ABSTRACT

Although the field of software engineering is relatively new, it can benefit from the
use of expert systems. Four prototype expert systems have been developed to aid in
software engineering management. Given the values for certain metrics, these systems
will provide interpretations which explain any abnormal patterns of these values during
the development of a software project. The four expert systems, which solve the same
problem, were built using two different approaches to knowledge acquisition, a bottom-
up approach and a top-down approach, and two different expert system methods, rule-
based deduction and frame-based abduction. A comparison was performed to see which
methods better suit the needs of this field. It was found that the bottom-up approach
lead to better results than did the top-down approach, and the rule-based deduction sys-
tems using simple rules provided more complete and correct solutions than did the
frame-based abduction systems.

* Research supported in part by the National Aeronautics and Space Administration
Grant NSG-5123 to the University of Maryland. Computer support provided in part by
the Computer Science Center of the University of Maryland.

V. Basili

Univ. of Maryland

4 of 24

THE VIEWGRAPH MATERIALS
FOR THE

VIC BASILI PRESENTATION FOLLOW

TAME:

TAILORING A MEASUREMENT ENVIRONMENT

Victor R. Basili
H. Dieter Rombach

Department of Computer Science
University of Maryland
College Park, MD 20740

V. Basili

Univ. of Maryland
5 of 24

INTRODUCTION

TRANSITION PROBLEMS:

HOW DO WE

— use Ada concepts properly?

— manage projects properly?

— support Ada projects by methods and tools properly?
— support transition to Ada properly?

SOLUTIONS:

— evaluate various quality /productivity aspects of Ada
processes/products

— allow for tailoring processes to specific project needs

— provide tool support

— make measurement & evaluation an integral part of an
SDE
(ADDS A NEW DIMENSION TO SDEs)

TAME (TAILORING A MEASUREMENT ENVIRONMENT)

V. Basili
Univ. of Maryland
6 of 24

INTRODUCTION

PROJECT PHASES:

DEVELOP A PROTOTYPE SUPPORTING
ALL KINDS OF MEASUREMENT &
EVALUATION ACTIVITIES

(goal/question/metric paradigm)

INTERFACE TAME PROTOTYPE TO AN
EXISTING SDE

(providing on-line feedback into development
activities)

DEVELOP GUIDELINES FOR THE DESIGN
OF FUTURE SDEs

(support various process models,
tailor process models to project goals and
environment)

TAME (TAILORING A MEASUREMENT ENVIRONMENT)

V. Basili
Univ. of Maryland
7 of 24

MEASUREMENT HISTORY (AT UMD)

— The frequent incorrect usage of methods and tools is not
known (NO FEEDBACK) [Basili, Gannon, Yeh,
Zelkowitz, ..]

— Single metrics are not sufficient [Basili, Turner]

— We have to design experiments thoroughly [Basili,
Reiter]

— We can’t just use other people’s models (TAILORING)
[Basili, Freburger]

— Meta Models and Metrics are suited for transition
purposes [Basili, Bailey]

— We have to associate interpretations with metrics
[Basili, Doerflinger]

— Goals/Questions/Metrics paradigm for measurement

and evaluation [Basili, Weiss|

— Measurement and evaluation is judged based upon
”cost/payoff” and ”confidence in results” issues

(CLASSIFICATION SCHEME FOR EXPERIMENTS)
[Basili, Selby]

— Formalize expert knowledge (EXPERT SYSTEM)
[Basili, Loggia-Ramsey]

— Formalize evaluation & improvement paradigm [Basili]

— Formalize the tailoring of processes towards project

quality goals and environments [Basili, Rombach]

TAME (TAILORING A MEASUREMENT ENVIRONMENT)

V. Basili
Univ. of Maryland
8 of 24

LESSONS LEARNED

DEVELOP QUALITY A PRIORI
PROVIDE & SUPPORT FEEDBACK

DEVELOPMENT METHODS ARE
HEURISTIC AND NOT FORMAL

PREPARE DEVELOPMENT PROCESS FOR
MEASUREMENT & EVALUATION

ALL PROJECT ENVIRONMENTS ARE
DIFFERENT

REUSE EXPERIENCE ONLY AFTER
TAILORING IT

THERE ARE MANY PROCESS MODELS
(NEED TO BE TAILORED)

MANAGEMENT CONTROL IS CRUCIAL
AND MUST BE FLEXIBLE

MEASURES IN ISOLATION ARE USELESS
(METRIC VECTOR)

EXPLORATION MUST BE TOP-DOWN (TO
GET THE WHOLE PICTURE)

DEFINE TERMS (COMPLEXITY, METHODS,
)

TAME (TAILORING A MEASUREMENT ENVIRONMENT)

V. Basili
Univ. of Maryland
9 of 24

FUTURE SDEs

SDE MODEL (Environments Workshop, UMD,

May 1986):

peorLe| [HETRa(] [TooLs
$ 1 g 1

Deta Repoitory
(def. PROCESS HODEL)

CONSTRUCTIVE SDEs

one method or tool B

a set of methods and tools

a set of methods and tools 7,7 H/H /E 7
supporting ONE particular

process model IVl
a set of methods and tools ; - shovi~term
supporting a VARIETY of - vnid- torm
process models r7 7 7/
a set of methods and tools

supporting a VARIETY of & TRAME
META PROCESS MODELS, which 5 ([{)
can be TAILORED to !I ; ong-=lern

specific project needs.

rreend

TAME (TAILORING A MEASUREMENT ENVIRONMENT)

V. Basili
Univ. of Maryland
10 of 24

TAME REQUIREMENTS

e PURPOSE: DEVELOP PROTOTYPE FOR

— Establishing evaluation goals

— Deriving questions / metrics

— Collecting / validating data

— Storing / retrieving data

— Interpreting data wrt. evaluation goals

e POTENTIAL USERS:

— Managers

— Developers

— QA personnel
— Researchers

e USER VIEW OF THE SYSTEM:

— A system which is driven by a quantitative / traceable
SW quality model (goals/questions/metrics)

— NOT just a regular SDE augmented with measurement
tools

— Open-ended wrt. metrics & evaluation goals

TAME (TAILORING A MEASUREMENT ENVIRONMENT)

V. Basili
Univ. of Maryland
11 of 24

TAME ARCHITECTURE

PC ‘ User Interface Level

R

Evaluation Level

Main

frame

Ada

dependent

Measurement Level

Repository Level

TAME (TAILORING A MEASUREMENT ENV IRONMENT)
V. Basili

Univ. of Maryland

12 of 24

FIRST PROTOTYPE

e IMPLEMENT RESTRICTED SUBSET OF
THE TAME REQUIREMENTS:

— no support of interpretation

— small subset of measurement tools

— only minimal SDE interface (access to development
documents)

— restricted data repository

— Limited emphasis on security / configuration

mangement control strategies

e TARGET SYSTEM(S):

— MicroVAX (VMS) & SUN-3 (UNIX)
— Implementation should allow for distribution (data
repository, measurement tools & evaluation on a

main-frame, user-interface level on PC’s)

e IMPLEMENTATION LANGUAGE(S):

— ADA (MicroVAX) for Ada-dependent levels
(measurement & data repository level)
— Pascal or C (SUN-3) for the Ada-independent levels

(user interface & evaluation level)

e SCHEDULE:
— Complete this prototype by Fall 1987

— Work on related research issues in parallel

TAME (TAILORING A MEASUREMENT ENVIRONMENT)

V. Basili
Univ. of Maryland
13 of 24

CONCLUSIONS

TAME IS A VERY AMBITIOUS PROJECT

TAME’S OBJECTIVES GO BEYOND
AUTOMATING MEASUREMENT &
EVALUATION ACTIVITIES

TAME WILL HELP DEVELOPING
GUIDELINES FOR FUTURE SDEs

TAME ALLOWS / REQUIRES SOFTWARE
ENGINEERING TO INTERFACE WITH
OTHER COMPUTER SCIENCE DISCIPLINES

— data bases

—artificial intelligence

TAME (TAILORING A MEASUREMENT ENVIRONMENT)

V. Basili
Univ. of Maryland
14 of 24

EXPERIMENTING WITH
EXPERT SYSTEMS
FOR
SOFTWARE MANAGEMENT

VICTOR R. BASILI
CONNIE LOGGIA RAMSEY

V. Basili
Univ. of Maryland
1S of 24

MOTIVATION

Why develop expert systems for

Software engineering ?

To capture rules of the SE process and

use them to guide S/W management

It allows us to:
handle more information

capture corporate knowledge

train new personnel

V. Basili
Univ. of Maryland
16 of 24

T B N B EEEAEEEEEEEEEE O

Methodology

Given a homogeneous environment and data
from past software projects,

1. determine useful variables
- easy to collect
- meaningful
- examples
programmer hours

lines of code

V. Basili
Univ. of Maryland
17 of 24

Methodology

2. Develop baselines of normalized metrics

- example - average programmer hours per
line of code for past projects at specific
time intervals

- historical
- environment-specific

- normalize by comparing variables against
each other

- average value of baseline is ‘‘normal’’ for
past projects

- deviant metric values (more than one
standard deviation above or below the
average baseline) suggest abnormal project
development

V. Basili
Univ. of Maryland
18 of 24

N ¥ B B X B E B EEEEBEEEEEE B O
| S N

Methodology

3. Determine interpretations for metric values
which deviate from baseline.

- examples
unstable specifications

good testing

V. Basili
Univ. of Maryland
19 of 24

RESEARCH ISSUES

FEASIBILITY OF EXPERT SYSTEMS
- SCIENCE OF SOFTWARE ENGINEERING NOT
WELL DEFINED
-~ KNOWLEDGE BASE EXPLORATORY

METHODS FOR CONSTRUCTION
- TYPE OF INFERENCE MECHANISM
RULE-BASED DEDUCTION VS, FRAME-BASED ABDUCTION
- METHOD OF KNOWLEDGE ACQUISITION
TOP-DOWN VS. BOTTOM-UP

TRANSPORTABILITY
- ARE THE RESULTS GENERALIZABLE
- CAN SYSTEMS BE MOVED TO OTHER ENVIRONMENTS

V. Basili
Univ. of Maryland
20 of 24

Methods for Building Expert Systems

- Determine which is best suited for software
engineering

- KMS

- Rule-Based Deduction

- IFF <antecedents>
THEN < consequents>

- used simple rules (one metric clause in
antecedent)

- used certainty factors (indicate certainty
of conclusion given the antecedent)

- Frame-Based Abduction
- one frame for each interpretation
- hypothesize-and-test cycles

- generalized set covering model

V. Basili
Univ. of Maryland
21 of 24

Example Operation

Given a new project,

- determine values of metrics at particular time
phase

- determine whether these values are deviant
(using standard deviation test)

- indicate findings to expert system

V. Basili
Univ. of Maryland
22 of 24

in
E
i)

M

0

[~
-

-. .-.—
-'- -’
= ~
) - -
-) -‘. .-.
t... m'- L] -
-]J‘ - =
= - rd -
Y . L
l-.-
. s ~ -
N - -~
. -
T = :
e e
-—
—
b | - T H T
i 1'.'- L - o I |
T .
17

V. Basili
Univ. of Maryland
23 of 24

POSSIBLE INTERPRETATIONS

ERROR PRONE CODE < 0.94>
EASY ERRORS OR CHANGES BEING FOUND OR FIXED <(0,81>
LOTS OF TESTING <0.75>
LOTS OF TERMINAL JOCKEYS <0.75>
UNSTABLE SPECIFICATIONS <0.50>
NEAR BUILD OR MILESTONE DATE <0.50>
GOOD TESTING OR GOOD TEST PLAN <0,25>
MODIFICATIONS BEING MADE TO RECENTLY TRANSPORTED
cope <0.25>

V. Basilj
Univ. of Maryland
24 of 24

AUTOMATING THE DESIGN PROCESS
WITH SYNTACTIC-BASED TOOLS

Marvin V. Zelkowitz
Department of Computer Science

University of Maryland
College Park, Maryland 20742

Abstract

This report describes a tool that is being developed to aid in the design process of
software production. It is an extension to the SUPPORT syntax directed editor. The
idea is to create grammatical descriptions of the design process and embed them into
the syntactic structure of code production. The extension of a monolithi¢ environment
like SUPPORT which can handle programs of about 5,000 source lines into a distri-
buted environment handling systems of up to 1,000 modules of 100,000 source lines of
code is also under study. This report describes some of the experiences to date and
gives early indications of how this development will proceed.

1. Introduction

For the past several years, the SUPPORT environment has been under develop-
ment as a mechanism to aid programmers to build and test reliable Pascal programs
[Zelk 84]. From one perspective (e.g., the user community of Freshmen computer sci-
ence majors at the University of Maryland), SUPPORT can be view as an intergrated
environment for the development of Pascal programs that runs on an IBM PC com-
puter. It is based upon a syntax-directed editing paradigm for entry of source text,
and it contains an interpreter and debugging tools all managed in a multi-window
environment (Figure 1).

Syntax editing differs from the usual character oriented editor in an important
way. Instead of the cursor on the screen indicating a position in a program file where
text can be entered, in a syntax directed editor the cursor wraps a segment of the pro-
gram and the user can either type in the appropriate text or can choose an appropri-
ate response from a menu of choices on the screen (Figure 2). In this example, the
cursor wraps the statement placeholder, and any text that is a syntactically correct
statement may be entered.

The use of windows allows for a programmer to monitor several activites at one
time. For example, Figure 3 displays four windows on the screen. The top window is
the command window where commands to SUPPORT are echoed. Window 2 is the
Variable Trace window where individual variables can be displayed and are automati-
cally undated on the screen when their values change. Window 3 is the Statement
Trace window where the programmer can watch the program dynamically execute,

M. Zelkowitz

Univ. of Maryland

I of 15

and window 4 is the Execution output window where output from the program
appears. The system contains several additional ways to aid the programmer in
developing a program including the ability to interrupt and restart execution, to set
breakpoints and to display data from the program’s run time data display stack.

SUPPORT has been in use at the University of Maryland, and based upon this
past year’s experience, as well as experience from others [SIGS 84] who have built syn-
tax directed editors, several conclusions can be stated (Figure 4):

(1) The acceptance of syntax directed editing seems inversely correlated with previ-
ous programming experience. That is, more experienced users find the constraints
of syntax editing very limiting. Although the syntax editing paradigm has been
available for about 8 years, it has not generally caught on. More about this
later.

(2) Syntax editing is a powerful program building technique, but is it perhaps more
of a solution looking for a problem to solve. The concept is very simple - pro-
grams are stored as parse trees, and commands to manipulate these trees are
easy to build. Unfortunately, little work has gone into how to use these com-
mands effectively and how to integrate these commands with the needs of pro-
grammers.

(3) An important issue in all this is the user interface. The syntax editor has to help
the user build better programs and not perceived as a roadblock to its accep-
tance. This user interface has been generally ignored by others.

(4) One way to aid the user is the concept of an editing hierarchy with syntax edit-
ing as only one aspect of this structure.

2. Editing Hierarchy

Syntax editing has generally not be viewed as a powerful editing technique since
it is viewed as too constraining to the program. The problem is that the technique is
useful in limited situations so an editor that depends upon the technique for total pro-
gram generation is hard to manage.

For example, program modification is extremely difficult with this paradigm.
Usually the entire segment of the program must be deleted and rebuilt since the
underlying tree reproesentation must be maintained. In order to avoid such problems,
the following classification scheme for editors is being developed (Figure 5) [Zelk 87].
It is assumed that an effective editor contains more than one level of editing feature.

(1) At the base level is the character oriented editor, much like existing full screen
editors. In the SUPPORT case, the user can wrap a segment of source program,
pull the text into a separate editing window, modify this text arbitrarily, and
have the text reparsed into the program tree on exit from this internal editor.

(2) A second feature is the file inclusion feature. This works best for passing data
declarations like COMMON blocks in FORTRAN among modules.

(3) A third level is the syntax editing mentioned earlier. Most editors have the first
two of these and syntax editing has only this third level. SUPPORT contains all
three levels. The include feature reads in full syntax which means that programs

M. Zelkowitz
Univ. of Maryland
2 of 15

written using other editors or systems can be pulled into the environment.
Although SUPPORT is designed as a closed system with its own file system for-
mat, it does have commands for importing and exporting source programs so
that SUPPORT can be used to interface with other systems.

(4) The abililty to add macros adds to the power and extensibility of the underlying
programming language. An experimental version of SUPPORT is looking at
macro additions. The inclusion of large macros gives the system a fourth genera-
tion language flavor with a fill-in-the-blanks approach to programming while a
large number of small macros gives the system the appearance of a language
extension and a design language flavor.

(5) Knowledge representation allows for the ability to use artificial intelligence and
expert system technology to aid in the design process. This is currently under
study in SUPPORT.

(6) A complete data flow model allows for compiler optimization technology to build
better source programs.

The SUPPORT project is evaluating these alternatives. It is our belief that a system
that implements them all will develop as a powerful design language processor and
not simply a source code generator.

3. Application to NASA

An important issue to discuss here is what is the relationship of a system like
SUPPORT to the programming environment at NASA. Source code entry is not a
major problem there, so a syntax directed editor would be of marginal benefit. How-
ever, instead of the view of SUPPORT given above, consider the following description
(Figure 6):

(1) The language handled by SUPPORT is defined by a grammar that initializes
SUPPORT’s internal tables when execution begins. Grammars for subsets of Pas-
cal are currrently used by students; however, we have built grammars for C and
for Ada, and are experimenting with design grammars useful to NASA.

(2) SUPPORT contains a window manager for developing any structured text.
There is some semantic checking of this text to aid in text generation.

(3) Much of software production is document preparation: requirements, specification
and design documents, source code, test plans, etc. NASA estimates that up to
50% of the cost of a project falls into this area. Thus an effective document
preparation system would have a large potential payoff.

An early prototype of SUPPORT for the NASA environment is described by Fig-
ure 7. Each NASA FORTRAN module is described by a design prologue and the gen-
eration of structure charts is an early indication of overall program structure (Figure
8).

In Figure 9, the grammar read into SUPPORT was designed to look like these
design prologues, and in this picture module ProcC is called from both ProcA and
ProcB and calls ProcD and ProcE. This can be easily seen by the new window which
displays this information automatically (Figure 10). The user can nagivate through

M. Zelkowitz
Univ. of Maryland
3 of 15

the structure chart with the current module always being in the center (ProcC in Fig-
ure 10) and the calling modules on line 1 and the called modules on line 3.

The initial prototype seems quite feasible, so the problems that remain are how
to integrate the basic window structure of. SUPPORT into the operational NASA
environment. (This is not as easy as it sounds.) Thus the goals for the current
research are summarized by Figure 11:

(1) SUPPORT is limited to single user systems of up to 5,000 lines of source pro-
gram. This needs to be extended to systems of several hundred modules and
perhaps up to 100,000 lines of code. Internal data structures need to be greatly
altered to handle such complexity.

(2) The design language grammar needs to be studied for effectiveness in this
environment.

(3) NASA needs to be able to test programs on the target computer system which is
a large mainframe while SUPPORT was designed to run on DEC VAX and IBM
PC computers. Instead of an internal interpreter, the system needs to interact
with the running program on another machine in a distributed manner. The
major research problem is to develop a protocol for this interaction.

This project has shown the feasibility of using intergrated environments within indus-

trial settings. However, in order to make such systems practical, there needs to be

further work on both the design language needed by a professional programming

group like at NASA and with building distributed integrated environments across

diverse hardware.

4. Acknowledgement

This work was supported in part by NASA grant NAGS5-368 to the University of
Maryland.

5. References

[SIGS 84] Proceedings of the ACM SIGSOFT Symposium on Practical Software
Development Environments, Pittsburgh PA, April, 1984.

[Zelk 84] Zelkowitz M. V., A small contribution to editing with a syntax directed edi-
tor, ACM SIGSOFT Symposium on Practical Software Development Environments,
Pittsburgh PA, April, 1984, 1-6.

[Zelk 87] Zelkowitz M. V., An editor for program designs, IEEE Computer Society
Compcon, San Francisco, CA, February, 1987.

M. Zelkowitz

Univ. of Maryland

4 of 15

THE VIEWGRAPH MATERIALS
FOR THE

M. ZELKOWITZ PRESENTATION FOLLOW

SUPPORT
One View

Integrated environment for Pascal development
Based upon syntax directed editor

Pascal editor, interpreter, debugger, window
manager

Runs on PC-DOS and UNIX systems

Used at University of Maryland in introductory
computer science course for majors

Figure 1.

M. Zelkowitz
Univ. of Maryland
5 of 15

*Z sanbt4

LLNU-/ §3W3S 0/7-Q =:-G~[[ED J0.d-p S[LUM- jL-Z ¥20[(-]

Univ. of Maryland

M. Zelkowitz
6 of 15

P-%mz

pus
pua
FI'\[\ R IRES
NIREETS
op . <> v oapiym
M, =
uLbag
ctr rsnapty S(andinoanduly weabiodguiep wedfioad

o
E
N O
= o<
‘¢ 2anbta E=
250
e —
Nz
INdIN0 > payoeay 1ULDOYEALG (07 srwan = O
NOLLNDEXH oL andur ayp

DOLIAIEHET BNULIUDT 7 s

uLbag
mﬁumﬂ_ . Hv m ﬁfuv Kmu’ : _Ul—._u ¢ —._.__H_.._h_m_ dBn .,.. .“H _.m—u H“. _.m_u m....._—i;um”:”d._ .”*
fpua
aIWE
pua
dOVAL > T, =0 YyorLmg

ro ! “
Pa1al 10 01 313 pue Zo Adoo }OTRCZR)PRY

T =Yy rme-[03 dwa] ncunﬁ_omahhmuu
G U L ¥ e T [[T
AV 1dSI0 J19VIHYA

>
TIAVTIVA € =1 3-[PPy]

SMATA
JIJLLTIA

SUPPORT

Initial results

Preference for standard editing seems correlated
with previous experience

Other syntax editors generally not used
extensively

Syntax editing is a powerful program building
technique, but is it more a solution looking for a
problem to solve?

The user interface has generally been ignored by
others

Development of editing hierarchy

Figure 4.

M. Zelkowitz
Univ. of Maryland
8 of 15

SUPPORT
Editing hierarchy

Full screen character editor
Hierarchical file inclusion
Syntax editing

Macro processing
Knowledge representation

Data flow model

Figure 5.

M. Zelkowitz
Univ. of Maryland
9 of 15

SUPPORT
How applied to NASA environment?

Driven by externally defined grammar

Intelligent window manager for developing
structured text

Some semantic checking of attributes

Much of software development is document
preparation

Figure 6.

M. Zelkowitz

Univ. of Maryland
10 of 15

SUPPORT
Design Prototype

e Look at design prologues

e Build structure charts

Figure 7.

M. Zelkowitz
Univ. of Maryland
11 of 15

e
g 2aInbT4d g
N B
= s
2=,
X g —
E R 2 4 ! w O rm
B0MdaNI O TES
B SR SRS S S K I M_ M U a
d
CewWEUT S HIWWYED0E J
o
¢ eauEeu S TYINDIET] d
J
CPLT G J

SNOILWA3d0 3WwN 3714 #LINN WEHL404 J
PO3TNIYILIY 23T ONHELES J

¢ ASLLWD > i IONIYIATY SNOWWODD m

CAstL4t> b Q37190 INILAOY m

CASHLAD AR TV)

¢sixaly Cpry CRuodnpy ¢dilty CpLeo]

NOILdIH4Z253d WIQ 0/ 3dAL LMIWNOSV 2
LRI LNIWNDYY J

CTBIEAY > ¢ JS0ddild J

R TR VTR I

1 X3 WYH90Md

o
‘¢ 2anbtg S
=
N =
x nMa
R N I N S L T R S S O 3 ”l_ an o v
ST 4 ~ -
U > o -
17 STNNT: N . 0
J204d INILNDHEN= | Z
0 =52
£ a o
PR R SR M T R M_

J0EdIHg 2

Wk ko
Crameu > D YIWNTHED04d a
o
g |----- _ ° ¢ saueut > TYINSTIEF] o
A
CTpLLunt o
SHOILYE3dD JWeN 3TTd #LINM N¥H1404 J
C(3INIE3H43Y S3T4 TeNd3ILKT 0
0
' UISLLWODT S IONIMISTY SNOWWDD 9
A
Joodd ‘gaodd Q3D INILNOY 0
o
SelER ‘wo0Jdd 1 AG WD o
N
¢ 3uodfae SNOTLAINDSIQ WIA 0/ 3dAL LNIWNoYY i
c 1EITT LNIWNSYY o
i
¢T8INAY > 0 JE0dHNd o
ok ok Sk ok ok k)
a0
a204d INILNOYaNs
i
||| C1 X3l WREBh0Yd

‘07 @anbtg
E
t =S
z =
25—
¢ sawRL > TYINGTEI] 08,5
.) o m_M,..HmVM
CUpLRLunt d
|||||| SNOTLWd3do 3w 304 #LINN Wydld0d d
? CJ3ONIEIHTY ST 4 TYNHILKT u
a
CU3sLLWoD > TJINIETATY SNOWWOD J
0
Joodd ‘gaodd 0 Q3ITWI INILNOY J
v J
slelsBlEl “w00dd A9 1TWD J
d
<oquodfiae SNOTL4IN0S30 WIA 0/ 3dAL LNIWNSYw J
LRI LNIWNSYY d
J
¢ $31%81° > ¢ 3S0dYnd 0
¢ ok o ok e o o ok ok
a0
0204d JNILNOYTns:
i
e e — — —m —— — ——m —————— ———————————————— == X3 Wedn0dd

_ Jo04d || Jao4d |

SUPPORT

Goals of current project

'

SUPPORT currently limited to single user 5,000
line software

Extend concept to 100,000 lines multi-user
developments

Extend system to create a design processor

Distributed design - interact with a running
program

Need to consider multi-machine interface

Figure 11.

M. Zelkowitz
Univ. of Maryland
15 of 15

SEL ADA* EXPERIMENT:
STATUS AND DESIGN EXPERIENCES**

William W. Agresti***
Computer Sciences Corporation

ABSTRACT

The status of the Software Engineering Laboratory (SEL) Ada
experiment is reviewed, and the designs produced by the par-
allel FORTRAN and Ada development teams are compared. The
Ada team produced a significantly different design for the
spacecraft dynamics simulator. Several lessons learned from
the Ada design experience are discussed, including the con-
ditions favoring an Ada-oriented design and the importance

of understanding management expectations.

INTRODUCTION

Ada shows promise as a significant contributor to the devel-
opment of more reliable software. An experiment is in prog-
ress at the National Aeronautics and Space Administration's
Goddard Space Flight Center (NASA/GSFC) to learn whether Ada
will deliver on its promise. The experiment is planned and

administered by the Software Engineering Laboratory (SEL) in

*Ada 1s a registered trademark of the U.S. Government (Ada
Joint Program Office).

**Proceedings, Eleventh Annual Software Engineering Work-
shop, National Aeronautics and Space Administration,
Goddard Space Flight Center, December 1986.

***Author's Address: Computer Sciences Corporation, System
Sciences Division, 8728 Colesville Road, Silver Spring,
Maryland 20910.

W. Agresti
CSC
1 of 25

the Flight Dynamics Division at NASA/GSFC. Personnel from
all three SEL participating organizations--NASA/GSFC, Com-
puter Sciences Corporation (CSC), and the University of
Maryland--support the Ada experiment.

The objective of the experiment is to assess the effective-
ness of Ada in the flight dynamics software development en-
vironment at NASA/GSFC. The experimenters intend to gain an
initial understanding of Ada's effect on productivity, re-
liability, maintainability, reusability, and manageability.
This Ada experience is expected to assist in planning the

development of software for the NASA Space Station.

The Ada experiment began in January 1985. It involves the
parallel development in FORTRAN and Ada of the attitude dy-
namics simulator for the Gamma Ray Observatory (GRO) space-
craft. Experiment organization and Ada training experiences
are discussed in [Agresti 85] and [Murphy, Stark 85]. This
paper provides an update on the experiment status, a summary
of the FORTRAN and Ada design comparison, and a collection
of lessons learnea about Ada-oriented design.

EXPERIMENT STATUS

The GRO dynamics simulator is being developed by two teams,
one using Ada and the other using FORTRAN, the language typ-
ically employed in this environment (Figure 3). Each team
was initially staffed at seven programmer/analysts. The
development environment is the DEC VAX-11/780 and -8600 com-
puters under VMS, with the Ada team using the DEC Ada Com-
pilation System (ACS).

W. Agresti
CSC
2 of 25

The simulator is part of the ground support software needed
for the GRO mission. Both development teams are building
real, operational software, not a "toy" system devised spe-
cifically for the experiment. The software will allow ana-
lysts to test onboard flight software under conditions that
simulate the expected in-flight environment as closely as
possible. The FORTRAN simulator consists of 51,000 source
lines of code. The Ada simulator, though not finished, will

be much larger as measured by source lines.

Figure 4 shows the schedule followed by both teams since the
January 1985 start. The FORTRAN team's schedule is typical
for this environment, with the exception being the extended
acceptance testing period due to lessened schedule pressure
after 1Y85. The Ada team faced the task of first learning
Ada. The first 5 months were spent chiefly in Ada training,
including the development of a 6000-line Ada pilot project
[Agresti 85]. This training period caused the Ada team to
lag the FORTRAN team in progressing through the dewvelopment
phases. Another cause of the schedule differences in Fig-
ure 4 is the unequal staff effort levels of each team. Fig-
ure 5 accounts for this level-of-effort disparity, showing
the staff-months of effort attributed to each activity by
each development team. For requirements analysis and design,
the Ada team expended more effort; for Ada system testing,
however, less effort is being estimated. The rationale for
this lower estimate is that Ada modules are continually in-
tegrated during implementation. The effort typically re-
quired in a FORTRAN development for integration during the
system testing phase is not expected to be needed by the Ada
team.

W. Agresti
CSC
3 of 25

COMPARING FORTRAN AND ADA DESIGNS

As Figures 4 and 5 indicate, the Ada team is currently in
the implementation phase. When the Ada system is finished,
the long-awaited comparison to the FORTRAN simulator will Dpe
possible. Available now, however, are both designs, so a

design comparison was conducted [Agresti et al. 86].

A preliminary comparison of the designs produced by the
FORTRAN and Ada teams revealed clear differences in design
drivers and design abstractions (Figure 6). The FORTRAN

team had more schedule pressure than the Ada team. This

condition, when coupled with the presence of FORTRAN-oriented

designs for past simulators, led to the adaptation of past
designs to serve the new mission's requirements. The Ada

team was encouraged to investigate so-called Ada-oriented

design approaches, that is, those that exploit Ada's features

and capabilities. The team was exposed to both PAMELA
[Cherry 85] and Booch's object-oriented approach [Booch 83]
during its training. Ultimately, the team developed and
applied its own object-oriented methodology [Seidewitz,
Stark 86|. The principal design drivers for the Ada team
were the encouragement to pursue new design methods and the

freedom not to reuse past FORTRAN-oriented designs.

The design abstractions detected in the two designs reflect
the differences in design drivers. The FORTRAN design pri-
marily uses procedural abstractions, whereas the Ada design
is structured around objects and state machine abstractions.
The designs were nearly identical as measured by the number
of procedural units defined at the critical design review

(CDR) : 262 FORTRAN subroutines versus 252 Ada subprograms.

W. Agresti
CSC
4 of 25

Another focus of the design comparison was the operation of
each simulator as prescribed in each design. Figure 7 shows
the high-level structure of each design. Worth noting first
is the difference in design graphical notation. The FORTRAN
design is represented by structure charts showing invocation.
The Ada design uses object diagrams, with an arrow from ob-
ject A to object B showing that object A uses services pro-
vided by object B [Seidewitz, Stark 86]. The names used in
each design structure of Figure 7 are identical in three of
four cases: simulation control, onboard computer (OBC)
model, and truth model. The presence of a simulation con-
trol structural element in each design is understandable.
Because the interaction between the OBC and the rest of the
spacecraft and its environment (truth model) is the central
element of the attitude dynamics simulation, it is again

understandable that each design have such major units.

Although the names of the major units are identical, the
operation of the simulators is not. The FORTRAN simulator
increments its simulation clock and sequences through the
three major units in Figure 7: truth model, OBC model, and
simulation output. The Ada design in Figure 7 shows the OBC
model object above the truth model object in the diagram.

In the Ada team's object-oriented methodology, this arrange-
ment of objects in diagrams means that the OBC model object
is "senior" to the truth model object. The timing of the
Ada simulator is controlled by the OBC model object, which
issues requests to the truth model for needed sensor data.
The timing of the OBC model is not under user control as it
is in the FORTRAN design.

The differences in design abstractions and simulator opera-
tions led to the determination that the Ada design was dif-

ferent in essential ways from the FORTRAN design (Figure 8).

W. Agresti
CSC
S of 25

A more detailed comparison of the designs is provided in
[Agresti et al. 86].

LESSONS LEARNED ABOUT ADA DESIGN

The Ada team, through its experiences during the design
phase, learned a number of lessons about the relationship of
Ada and design. The first lesson follows directly from the
observation that a different design was produced by the Ada
team. Using Ada as the implementation language does not
ensure that an Ada-oriented design (i.e., one that exploits
Ada's abstractions and features) is produced. For example,
in one early Ada development project, the design of the Ada
system "looked like a FORTRAN design" [Basili et al. 85].
That an Ada-oriented design was produced in the current ex-
periment was attributed to the following conditions
[Agresti et 'al. 86]:

° The Ada team had the necessary resources to afford
not to reuse past designs.

° The Ada team worked directly from system require-
ments by removing the FORTRAN legacy in requirements docu-
ments and recasting system requirements in the multiple views

of the Composite Specification Model (CSM) [Agresti 84].

' The Ada team understood alternative design abstrac-
tions and was encouraged to explore Ada-oriented design
methods (Figure 9).

The first condition--the flexibility not to reuse past de-
signs~-is especially important. Reuse is a cost-effective
approach in the flight dynamics environment [Card et al. 86].
Not taking advantage of the legacy of past designs is costly
but, in this experiment, a key reason why an Ada-oriented
design resulted.

W. Agresti
CSC
6 of 25

The more general issue of legacy must be addressed by soft-
ware development organizations that have well-~established
procedures and standards oriented to other languages. Fig-
ure 10 shows a range of alternatives for the introduction of
Ada, along with some possible consequences. If an organiza-
tion seeks to exploit Ada's features, the best opportunity
exists when Ada is designated at the start of a project. 1In
such a case, the requirements can be specified in a more
language-neutral form, and the designers can be free to in-
troduce design abstractions that reflect problem-domain en-

tities and map conveniently to Ada language features.

Several lessons learned during the design phase related to
the management of an Ada-oriented design activity (Fig-

ure 11). At the CDR of a FORTRAN project, the number of
modules is known and used in estimating remaining cost.
What, however, should the cost-estimating unit be for an Ada
development? At the CDR, the Ada design had 252 subprograms
organized into 104 packages; the Ada team used 252 as the
size measure for estimating future costs. At project com-
pletion, it will be clear whether 356 (252 + 104) would have
been a better basis for the cost estimate.

The Ada design products were unfamiliar to higher level man-
agers. The design documents and CDR materials featured ob-
Ject diagrams like the one in Figure 12; managers, however,
were accustomed to seeing the structure charts used in
FORTRAN designs. The Ada team learned the importance of
educating management and review personnel before the CDR so
that the aesign notation would be understood.

The use of Ada-oriented design methods forced a reevaluation
of the milestone marking the end of the design phase. 1In
the flight dynamics environment, the criteria for design

phase completion are currently FORTRAN oriented. Ada offers

W. Agresti
CSC
7 of 25

greater opportunity for checking design consistency with the
compiler. Compilable package specifications and type defi-
nitions seem to be especially important elements to have com-
pleted by the CDR.

Project managers monitored the level of effort expended by
the Ada team during the design phase (Figure 13). Because
all members of the Ada team divide their time between the
Ada project and other work, effort levels fluctuated consid-
erably. Figure 13 shows that the seven team members con-
tributed hours to the Ada project at a level lower than two
full-time equivalent staff during some months of the design
phase. This varying, and generally low, level of effort
contributed to the extended schedule shown in Figure 4. The
peak effort in Figure 13 coincided with management reviews,
demonstrating that the deadline effect is language independ-
ent.

Some preliminary lessons learned about staffing were the
positive experiences using recent computer science graduates
and phasing in new Ada team members (Figure 14). The Ada
package specification-body dichotomy facilitates the defini-
tion of a "design envelope" to restrict the working span of
new staff members.

SUMMARY OBSERVATIONS

The principal observations on the Ada team's design experi-

ences can be summarized as follows (Figure 15):

° The Ada team did produce a different design for the

simulator.

° Specific conditions encourage the production of
Ada-oriented designs.

° Ada can influence every aspect of design, especially
management expectations.
W. Agresti

CSC
8 of 25

Monitoring of the Ada experiment will continue. The col-
lected experiences in coding and testing--along with the
FORTRAN and Ada product comparisons--will certainly provide
useful information on the effect and effectiveness of Ada.

ACKNOWLEDGMENTS

The support of the Ada team and the contributions of the Ada
experiment managers, F. McGarry and R. Nelson of NASA/GSFC,

are appreciated.

REFERENCES

[Agresti 84]
Agresti, W. W., "An Approach for Developing Specification
Measures," Proceedings, Ninth Annual Software Engineering
Workshop, NASA/GSFC, November 1984

[Agresti 85]
Agresti, W. W., "Measuring Ada as a Software Development
Technology in the Software Engineering Laboratory (SEL),"
Proceedings, Tenth ‘Annual Software Engineering Workshop,
NASA/GSFC, December 1985

[Agresti et al. 86]
Agresti, W. W., V. E. Church, D. N. Card, and P. L. Lo,
"Designing With Ada for Satellite Simulation: A Case
Study," Proceedings of the First Annual Symposium on Ada

Applications for the NASA Space Station, Houston, Texas,
June 1986

[Basili et al. 85]
Basili, V. R., E. E. Katz, N. M. Panlilio-Yap,
C. L. Ramsey, and S. Chang, "Characterization of a Soft-
ware Development in Ada," IEEE Computer, September 1985

[Booch 83]
Booch, G., Software Engineering With Ada. Menlo Park,
California: Benjamin/Cummings Publishing Co., Inc., 1983

[Card et al. 86]
Card, D. N., V. E. Church, and W. W. Agresti, "An Empir-
ical Study of Software Design Practices," IEEE Transac-
tions on Software Engineering, February 1986

W. Agresti
CSC
9 of 25

[Cherry 85]
Cherry, G. W., "Advanced Software Engineering With Ada--
Process Abstraction Method for Embedded Large Applica-
tions," Language Automation Associates, Reston,
Virginia, 1985

[Murphy, Stark 85]
Murphy, R., and M. Stark, Ada Training Evaluation and
Recommendation, SEL-85-002, NASA/GSFC, October 1985

[Seidewitz, Stark 86]
Seidewitz, E., and M. Stark, General Object-Oriented
Software Development, SEL-86-002, NASA/GSFC, August 1986

W. Agresti
CSC
10 of 25

THE VIEWGRAPH MATERIALS
FOR THE

W. AGRESTI PRESENTATION FOLLOW

W. Agresti

CSC
11 of 25

T STNENDIJ

NOISINAIAQ S3ADONIIDS WILSAS O
NOILVHOJdHOD SHONHIDS HALNANOD m u

{«641)-HOV-BEOL

NOILVHOdHOD S3IIN3IDS HILNdNOD
1LS3HOV "M°M

S3ON31dIdX3 NDISIA ANV SNLV1S
-INJINTH3dX3 vav 13S

W. Agresti
CSC
12 of 25

¢ JdNDIA

NOISIAIA SIONIIOS WIALSAS O O
NOILLVHOJdHO) SAONHIOS HA.LNJAWOD m “

NOIS3d
vav NO aiNdv3a1 SNOSS31 e

SNOIS3A
vayv dNV NVH1ldO0d ONIHVdINOD e

SNLVYLS LNJNId3dXd e

£ JANOIg

NOISIAIQ S3IONIIDS WILSAS
NOILVHOdYHOD SHONHIOS HILNJAdWOD

13 of 25

W. Agresti

CSC

{601)-4OV-1£8

INVIL HOV3 NO 317d03d £ ‘ONI44dVIS —

0098-XVA ANV 08Z/LL-XVA -LN3INNOYIANT —

3d0D
40 S3NIT ID2HNOS (NVH.LHOL) 000°0S :3ZIS —

dOLVININIS SOINVNAQ (04YD)
AHOLVAYHISEO AVYH VININVD :123rodd e

vav
ANV NVHLHO04 NI LNIINdOTINIA TITTIVHVd e

IN3NId3IdX3 vav 13S

Z
L
[=11]
<
p TUNOII :
=
NOISIAIQ S3ION3IDS WILSAS O O
(ELLIHDV-8E0L NOLLYHOJHO)D SAONAIOS HALNAWOOD m u
1861 9861 G861
“ T I T T T T T T
vo | €0 ! zo | 1D vo ! 0o | o0 | 10 v0 ! € ! zo | 1o [Wvil
' i I ' vav
1 1 i | 1 1 |
1S31 SIS
99V NOILYINIWITdNI NOIS3a -ATYNY ONINIVYHL
) $103Y
T T T T T T T T
I ! ! ! ' f | I |
1 | | 1 _ 1]
1531 _ ! _ ! ! " | |
W3I1SAS | | 1 |
1 1 \ ! 1 | "
! | ! !] | ! .
1 “ l _ |
| 1 |
1 | : 1 | N “
1s31 131 Wv3lL
IDNVLdIDIV W31SAS NOILVANIWITIWI NOIS3a \ NVHLHOJ
SIS
-ATVNV
‘S1D3Y

AYVA STIATT 1LHO443.

+TTNAIHIS

14 of 25

CSC

STAFF EFFORT BY ACTIVITY

\\\\\\\\\\\\\

T

o 2 o
w < w

~\\\\\\\\\\\\

SHLNOW 44V1S

ACTIVITY

G%g
e CS(C*
o G
G 9

9 HTANOIJ

NOISIAIQ S3ION3IOS WIALSAS

NOILVHOJdYUOD SHONHIDS HALNJdWOD Qm WQ

(+€6L1)-HOV-8E0L

(S3IOVIIV v0L)
SINVHOO0UdaNS ¢S¢
INIHOVIA 3LV1S
d3LN3IIHO-1233rdo

S3dNlivid vav miN

SAOHI13N
NDIS3IA M3IN

SANILNOYENS 29¢

1vdNaidoyd

SINIVHISNOD
IT1NA3IHIS

SNOIS3a 1Svd

NOIS3a vav

NOIS3Ad NVHLHO4d

3Z1S
TVNOILONNA

SNOILOVY1SaV
NOIS3a

SH3IANIHA
NOIS3a

SNDIS3IA YAV ANV NVYHL4d04 DNIdVIINOD

W. Agresti

CSC

16 of 25

L TANDIL

NOISIAIQ S3ON3IIDS WILSAS Um WO

NOILVHOdYHOD SHONJAIDS HI.LNdWOD

W. Agresti

CSC
17 of 25

HOV-L96

98/€/2/28

1nd1no 1300W 71300W
NOILVYINWIS 280 HLNY1
T0HLNOD
TNWL
TJOHLNOD NOILY S

NOILVTINWIS

NOIS3a vav NOISIAd NVHLHOA

SNOILVHIdO HOLVINNIS DNIYVdINOD

8 JINDIJ

NOISIAIG S3IONIIOS WILSAS
NOILVHOdJdHO0OD SHONJIOS HHA.LNJdWNWOD

W. Agresti

CSC
18 of 25

(2,9G1)-UOV-EL6

TOHLNOD

43SN 43daNnN 1ON 2480 40 ONIILL »
13dOIN H1NYL
ANy 290 40 D9NINIL 31VHVd3S —

NOILOVH1SaVv

mZ__._U<_>_ TVNLYIA 40 L'INS3Y o
14A0ON

HiNdl H3IAO0 290 40 ALIHOINIS —
NDIS3Ad vav NI d3lON S3ION3H3IddId e

IN3T1804dd
TOHLNOD TVNIDIHO DNILOIT4IH —
TINA3T HOIH 1V SNDIS3A 40 ALIHVYIINIS e

S1I3NAd0dd NOISAAd ONIdVdINOD

6 JdNODId

NOISIAIA S3ON3IDS WIALSAS
NOILVHOJYHOD SHONJAIODS HALNdNOD

Agresti

CSC

19 of 25

w

(2,6£1)-HOV-BEOL

SNYIS3a 1Svd
3dSN34 Ol 10N ddO44V Ol S3I2HNOS3IH AHVSSIIAN NIVLidO e

S103rodd 1071id I3sn —
SNOILOVH1SHVY NDISIA FAILVNYHIALTVY ANVILISHIANN e

(INSD)

SINIOdM3IA T1dILTNIN INOYd SINJFINIHIND3IY FZATYNY —
AJVOIT NVHLHO4d INONIYH —

SLN3INTHINDOIY WILSAS INOUA ATLD3HIA HOM e

NODIS3Ad dILNIIHO-vYav
NV 404 S311SIN03434dd

0T HANDIA

NOISIAIA SIDON3IOS WILSAS

(+86/1)-HOV-8E0L

INHO4 TvdLlNdN
-IDVNONVT FHOWN

Vv NI SLNIWIHINDO3Y 1SV
Ol ALINN1LHOddO 1S39

a3iAnON3Y
S1 AJVD3T NvH1HOd
41 ATNO 3A1LI344d

~NVH1lVvayv, 1vina3idodd

SINTT1904dd IONVNILNIVIA

NOILLVHOJdHO0OD SHONHIOS HHLNJdWOOD

14V1S 123rodd 1v vav

SO

W. Agresti

CSC

SISATVNY

SINIINFHIND3Y H3ldVv vav
NDIS3a H314V vav

NOISHIANOD

A9VNONVT I2HNOS

SIIONINOVIASNOD

AAILVNYILTV

NOILISNVYHL VAV-O1-NVH1d0d

20 of 25

TIT JdNOIA

NOISIAIAQ SIONIIDS WILSAS U O
NOILLVHOJdHOD SAJINHINS HALNJINOD m W

W. Agresti

CSC
21 of 25

(2.6/1)-HOV-8E0L

¢4dD 1V d3LN3IS3dd SI LVHM ‘SMIINIY —
<d3131dINOI NOISIA SI NIHM SINOLSITIIN —
¢S1HVHD JHNLINYLS FHL 34V FHIHM :S1ONAO0Ud —
¢IINAON V SI LVHM ‘NOILVINILST 1S0D —

— HLIM S3IJN3H34d1d
NO LNINIOVNVIA T3A3T HIHDIH ..31VvINd3., e

S3ANSSI LNIINFDVNVYIN ‘NDISIA vav

¢T J4NO1Id

NOISIAIQ SADON3IDS WILSAS

IS0

98/¥/2/28

NOILVHOJdHOD SHONAHIOS HHLNAdWOOD

§°¢C
A
G°C
vee
SiHvd
ONINOWNW
14vH230VdS
teee S3INoYoL
AVINIWNOHIANI
31NdINOD

S

0L
ianiiiiyv
14vHD230VdS
Leec

SJOINVYNAQ 3ANLILLVY ¢°¢°¢C

W. Agresti

CSC

22 of 25

€1 WNOIA

NOISIAIO SIDNIIDS WILSAS m WU
98,2/2/28 NOILVHOJdHOD SAONJdIDS HALNAWNWOD

W. Agresti

CSC
23 of 25

|
™
44V1S
3l1d

H4dOo)

NOIS3A ONIHNA
140443 40 13A31 IAvV3L vav

T HNbNDIA

NOISIAIAQ SAON3IDS WILSAS Om WO
NOILVHOJdHOD SHONAIDS HALNdAWOO

24 of 25

W. Agresti
CSC

(+86/1)-HOV-8E0L

»Ad0T13AN3 NOIS3A..
S3ANI4d3A NOILVYII4d123dS FDVYINIOVd —

SIILIAILDY 3Ad0J ANV NDIS3A 01 NI-ASVHd HLOOINS e

SIDVNONVYT LNIHIJdIG TVHIANIS Ol JHNSOdXT —
SNOILIVHISEVY NOISIAd —
1vISVd —

Ol 3INAa S3LvNavdo
IIONIIDS HILNdWOI LNII3FH HLIM FONIIHIdXT AAILISOd e

S3ANSSI ONI44V1S vayv

GT JdNOId

NOISIAIG S3IONIIDS WILSAS Um WO
NOILVHOJdYHOD SHONHIDOS HHALNAWNWOD

W. Agresti

CSC
25 of 25

{«6£1)-HOV-8E0L

SNOILVY1D03dX3
INJINTODOVNVIN ‘ATTVIOIdS3 ‘NDISIA
40 103dSV A4H3IAT IDNINTINI NVI vAV e

SNOIS3d dILN3IHO
VYAV 39VHNOINT SNOILIANOD J14123dS e

dOLVINNIS 04D JHL 404 NDIS3a
IN3d3441d vV dIdNAO04dd INv3l vaVv JHL e

NDIS3d Yav NO SNOILYAYHISa0

PANEL #2
EMPIRICAL STUDIES OF SOFTWARE TECHNOLOGY
E. Soloway, Yale University

V. Shen MCC
J. Gaffney, IBM

Studying Software Documentation From A Cognitive Perspective:
A Status Report

Elliot Soloway, Jeannine Pinto, Scott Fertig,
Stan Letovsky, Robin Lampert, David Littman, Ken Ewing

Yale University, Department of Computer Science
New Haven, Connecticut 06520

1. Introduction

Software documentation should be particularly invaluable for the maintenance programmer:
since the maintenance programmer is typically not the original programmer, the maintenance
programmer needs to go to some repository for key information --- the kind that that can’t
really be gleaned from the code itself. In practice, however, software documentation has a bad
--- and probably justified --- reputation: programmers don’t like to write it (it takes too much
time, it isn’t as much fun as designing/coding, and guidelines are often vague), or read it (it is
never up to date; the only truth is in the code), and managers don’t like to pay for it
(documentation is the first thing to be cut when a project gets into trouble). Nonetheless, pages
of documentation, best measured by the standing foot or the micro-ton, continue to be churned
out. Why is there this disparity between intent and realization? What can be done about it?
Just perhaps, if we take what looks like an orthogonal perspective, we might be able to identify
a few gems. In fact, for 2 years now we have been studying the relationship between software
documentation and maintenance from a cognitive perspective; in this brief progress report we
attempt to describe the key insights we have had in this effort.

2. Basic Questions Concerning Documentation

There are three basic questions that need to be answered in developing effective
documentation:

e WHAT: What should the content of documentation be? Should each variable be
described? Should control/data flow be described?

e HOW: What should the format of documentation be? Should English be used? Should
flowcharts? Should PDL?

e WWHEN: When should the programmer see a particular piece of documentation? By
and large, the answer to a programmer’s question is probably “in there somewhere,"
but the cost of searching volumes and volumes and volumes is a demoralizing, time
consuming and often fruitless endeavor. The programmer needs to see a particular
piece of documentation when it is needed --- whatever that might mean.

Clearly, these three issues are intertwined; however, they can profitably be separated out, and
studied more or less independently. In particular, our first studies (Section 4) have focused on
the WHAT question. On the basis of a better understanding of the WHAT of documentation, we
then initiated a study focusing on the WHEN question (Section 5).

R T I R
P O KO X A A A S X S K

The research reported in this paper was supported by the Jet Propulsion
Laboratory, California Institute of Technology under contract with the
National Aeronautics and Space Administration.

E. Soloway
Yale University
1 of 6

3. Methodology

As we have done with other aspects of the software process, we have taken a cognitive
perspective in this research: our approach is to try and understand how programmers really use
documentation. There are two aphorisms that guide this work:

e "You can observe a lot by just watching." Yogt Berru. We need to see what
programmers really do in specific situations. Arm chair prognostication hasn’t done
a lot for software documentation to date. Thus, we video-taped professional
programmers doing a maintenance task; we asked them to talk-aloud ---- tell us what
you are thinking about --- as they went about the task. The talking-aloud
methodology is one that is being more widely used in naturalistic problem solving
situations. Such verbal protocol data provide a window into the cognitive processing
that is going on in the head of the programmer. Reaction time studies, the forte of
psychologists, are fine for the laboratory when the task being carried out is very
focused. However, what would it mean to wire a programmer up to a reaction time
meter? What would millisecond differences mean? Also, it is not clear that
statistically-oriented studies are useful at this stage of research. That is, there is a
standard distinction made in psychological research between:

o Theory-testing research: where one tests hypotheses using statistical methods,
and

o Theory-building research: where one tries to simply develop hypotheses.

It is clear to us that we are in the theory-building mode: studying complex problem
solving behavior is a recent development in cognitive psychology, and there is
precious little known. Thus, numbers are not really all that useful here: trends and
qualitative remarks are the measurement tools.

e "Little by little grow the bananas." Judy Soloway. One typically doesn’t learn to
ride a bicycle by jumping onto a 10-speed bike; rather, training wheels are a good
idea. Similarly, we haven’t jumped into studying a 50,000 line program immediately;
we need to learn the business first in a somewhat more restricted setting. Once we
have some confidence in our methods -- and in ourselves -- then we can jump in over
our heads.

In what follows, then, we will outline the two studies we have conducted at JPL, and some of
the key observations made in each.

4. Study Area 1: Examining The WHAT Question

There have been two phases in this study area: first, we attempted to understand the baseline
-- what do programmers do. Next, we carried out a "manipulation:" can we change the
documentation and affect performance; the data from this phase is still under analysis.

E. Soloway
Yale University
2 of 6

I B B Rl e N

I . .

4.1. Phase I: What Do Programmers Do With Documentation?

Our initial study was to give professional programmers a program plus some documentation
that followed professional guidelines, and ask them to make an cnhancement. The program was
a 250-line, 14 subroutine, Fortran program that managed a smull database of personnel records
(containing name, address, etc.), and allowed a user to CREATE, SHOW, UPDATE, DELETE a
record. The enhancement was to add a RESTORE comnand, that would undelete records

deleted during the current session with the program.

In studying the video-taped interviews with over 20 professional programmers, two major

observations can be made:

o WHAT programmers needed to know: The information that was key to making the

Predictably, there was an interaction between the strategy employed by the subjects, their
acquisition of an understanding of the causal interactions in the program, and a correct

enhancement was information about the causal interaction of non-contigious, non-
local, pieces of code. For example, in order to make a correct patch, programmers
needed to realize how the database search routines interacted with the delete/restore
commands: the search routines return ONLY active records, since all other previous
commands wanted only active records, whereas the restore routine would want the
search routines to return a deleted record! This sort of causal information is
typically not identified in the code, and it is typically not identified in accompanying
paper documentation.

Strategies for comprehending the program: We can coarsely describe two different
strategies used by programmers as they went about understanding the program and
documentation:

o Systematic Strategy: When using this strategy, programmers started at the
beginning of the program and documentation and traced out the flow of the
entire program, using various forms of simulation (e.g, symbolic, actually
plugging in values). Once they understood the program to their own
satisfaction, they attempted the patch.

o As-needed Strategy: When using this strategy, programmers used their
anticipated patch to guide their study of the program; if additional information
appeared to be necessary, then they would attempt to backtrack and find the
relevant information.

enhancement:

e Adopting a systematic strategy invariably led to a correct enhancement.

e Adopting an as-needed strategy lead to mixed results: about half the subjects who

In otherwords, by not getting a global, more or less complete sense of the program, one is not
likely to "back into" global information when one is by and large focused on a local portion of

code.

adopted this strategy failed to come to understand the causal interactions and thus
didn’t develop a correct patch.

E. Soloway

Yale University

3 of 6

The above observations amount to this: the better one understands a program, the more likely
one will be able to change it correctly. Not too surprising, frankly. IHowever, our work has
focused on what it means to understand a program: what are the key pieces of information that
will facilitate a correct view of a program, and in turn, facilitate a correct modification of the
program, e.g., an understanding of the causal interactions that obtain between non-local pieces
of code. While a systematic strategy provides an essentially fool proof scheme for uncovering
such key facts, this strategy becomes impractical on real programs: by and large, it just isn’t
worth the effort to understand a 100,000 line program in order to create a 15 line patch. (It may
not even be possible to truly acquire a global understanding of a very large program!) Thus,
almost by definition, programmers will have to adopt an as-needed strategy when they approach
a real software maintenance task.

4.2. Phase II: Can We Help Programmers With Better Documentation?

What, then, are the implications for documentation if programmers will be adopting an as-
needed strategy? Based on the above research, we can make the following claim: we need to
explicitly provide programmers information about the non-local, causal interactions in the
program. That is, we need take information that is typically gained by simulating the program
and allow the programmer access to 1t, without the programmer actually needing to carry out
the simulation. Put still another way: programs are static representations of dynamic entities; we
need to abstract out some of the dynamic properties and express them as static descriptions. No
mean feat, that.

We have recently carried out another video-taped study with programmers at JPL who were
asked to make the same enhancement to the same program described in Section 4.1. However,
this time the documentation did explicitly contain information about the non-local, causal
interactions. For example, in Figure 4-1 we illustrate how we documented this type of
information. Notice in particular, that the variable iptr i1s key: it ties the search routines and
the delete routine together. We explicitly tell the programmer that there is an interaction taking
place. We felt that this explicitness would be a "sign" to the programmer adopting an as-needed
strategy: the programmer could use this information in backing into the information needed to
make the correct patch.

The results of our new documentation are mixed: in comparison to subjects using the initial
documentation, without the explicit information about the non-local, causal interactions, more
subjects who use our documentation and who employ an as-needed strategy do make a correct
patch; however, that difference is not statistically significant. However, what we are beginning
to see is an interaction between a programmer’s background and his need/ability to use our new
documentation: apparently, subjects who know about database programs, and thus who have
some familiarity with the coding tricks used in creating such programs, don’t seem to need the
"explicit documentation," while those with a less rich background in database programs do scem
to benefit most from our new documentation. In otherwords, individual differences are beginning
to become more and more apparent. Thus, while analysis of the data is still taking place, we
nonetheless feel that our documentation has tapped into something important; now, we are just
trying to tease out ezactly when and why that documentation seems to be useful.

E. Soloway
Yale University
4 of 6

Bl E EEEB.

B I .

SNOILOVYALNI TVSNVD “TYOOT-NON ONILNAWNOOJ JO ATJANVXA :I-¥ 240314

‘8dlnd sunna
243 Aq WoIssIs a3 Jo pua Iy 3 pajepdn aq [jia ‘¢p 9y eseqesep
243 'PAUIWAILTL 51 26uyas IS 0IIZ TeY) Jajeaus $1 25uyos J1 Kjuo
pue Ji weidold a3 30131x2 03 Joud 3sn{ N§Ip 09 LIILUA §12809p JO IV

*SPJ023I dAlye, swinied A[uo

CHOWYS #duls *pa0d3l 3eqy) 31373 30 ‘ALVAN ' MOHS 01 3[qe 3q QN3
10T [[im 3osn ® *,pa32[ap, 0} Pa3ULYD €1 P[3F SNIIS §,pI0OdI © JAYY N¥NL3Y

“Josm 943 Aq pagidads sureu 2y qita piodal 0 = J4ad!
«®AI3OE, UT pUg 03 JqRUn 3om THOYS PUE HOYS J1 0 3[4 47d]

Yale University

E. Soloway
5 of 6

1 + o8uyst = e3uydi
v, poa0|0p, = (L ‘Jadi)eseqp
(1 "9adi)eseqp *,1¥0d4 O¥0I3Y ONIL3II3C. (+'9)3LIYA
3I0N3
N3NL3Y
A.v. ..EocVﬂLo-_L. T1Y0
N3HL (0°D3°43d1) dI
SWBU ° (/'00Z)0S8AP 09s¥ILOVYVHD
(duren *a3ugdy ‘23di *aseqp)asalep AINVN ANILNOHLANS (outu ‘sSuydr u3ds ‘eseqp)e3e|ep INILNONENS

*SINILNOY YIHIO HIIM SNOILOVHILNI INVIYOJAL
1JOYYT STTVO
8dd ‘Ag-q37TTvO

‘gaJeas Juanbasqns v uo pasousd aq 03 pI0zal Iy
3uisnes | pajajap, 0 ,2A117%, WO} PI0D3I € JO snyeys gy aduegd o] :3SOJUNd

*Jold we rewdis 03 Jo pIodal
P3J13p 943 WO 360 5,396 3y wopad oy (31373Q *3'9) 39)puey
uol3owswel; v Aq pItn UIYS £ J1ds Jo anpea Y] °onea yugy swinyy
HOYS Ppue ‘dpjos ‘passadve piodas yef a3 03 393mod 373 0y Tenbs yas
A39w 5 ‘43ds ‘393mod paod agy tpadinbal §1 95BqeJEp 3q) Jo [aTeds
©OU U273 Jwipu = awupo J| 949p U1 Pa0dal ¢ Julyeso] Jo ssad0ad a7y
a31wndo 03 swupjo Jo anfea Yy sasn HOYS ‘sumsnol arew ag) £q
Suiup)o W PI03S ST PIOJAI PIFTIITE AJ3Ua3A 350W 97 JO JWRT 7

GN3
*SANILNOY WIHLO HIIM SNOILOVHILNI LNVIHOJIAI ":M”w._.mm
CHOUS :STTIVO (owsy ‘Jad) ‘|euUl}l ‘eSBQPIZYDJS TIVD
. 3513
JANLID :Ag-Q31TVO NYOL3Y
qoJess Aue jnogita paminial 51 Xapul dpjol = J9d)

£.PI023 3%73 BIQ3 40) pagaress Suiaq WO Y} & pIOIN possadoe L[snotA N3HLI (ewsu B3 swupjo) 41
=34 3y3 11 toveq wrep agy W paodas 93 Jo monyed0| ayy puy ol :FSOJUNd suupjo ‘sweu ‘(/°007)0StqP 09sYILOVAVHI

(dpiot *smupjo ‘sureu ‘yd; ‘reupn ‘aceqp) TS TINY N WZH..HDO&mDm (dpio1 ‘ewupjo ‘eweu ‘43di ‘|sul !l ‘eSEIP)YDJS 3INILNOYBNS

5. Study Area 2: Examining The WHEN Question

When a programmer is confronted by the need to make a patch to a real program, what
information does he need -- and when? To examine this question, we borrowed a real program
currently in use at JPL; to protect the names of the innocent, let us call this program the XYZ
program. XYZ is approximately 50,000 lines of code and has documentation that stands about 2
feet high. We studied this program for days and developed what we thought was a simple
enhancement to the program. We then gave the stack of documentation to two programmers
(working independently) at JPL, and asked them to find where in the program the enhancement
needed to be made. We video-taped the efforts of these programmers. (We need to point out
that XYZ has been used at JPL for some time, and that there were guidelines for developing the
documentation. Moreover, the documentation was meant to be useful.)

What happened? Our two subjects each spent close to 2 hours each reading documentation,
trying to understand what the system did. That was the first basic question: what are the goals
of this program? What are the goals of the various modules in the program? They needed this
information first; they needed to get a coarse, global sense of what the program was intended to
do. The goal information was in the documentation; but, it was interwoven with many low-level
details that hid the main points and confused the programmer. We repecat, the documentation we
used in this study was the real documentation for a real program.

We then rewrote the first manual in the documentation set to reflect the programmer’s desire
for the overall goals of the programs and the goals of the various main modules. We rewrote the
table of contents to this manual to reflect the new content. Our intention was to make this first,
overview manual "predicatable." That is, our intention was to provide the key goal information
upfront, when the subjects apparently needed it. The result? We ran two subjects (again,
working independently) on our new documentation: it took each about 20 minutes to identify the
module where the patch needed to be made.

We are the first ones to say that this study has many problems with it! Is the documentation
for XYZ representative? or is it a worst-case? Were our subjects representative? or were they,
too, worst-case? The fact still remains: we were able to reduce time on task from 2 hours to 20
minutes --- a big difference with a small number of subjects. Again, we seem to have tapped
into something important; now we need to carry out more crafted studies in order to tease out
exactly what is going on.

6. Concluding Remarks

We have been trying to breathe some life into program documentation: our intent is to develop
specific prescriptions for improving documentation so as to make it more useful. We have
approached the problem from a cognitive perspective: we need to understand how and why
documentation is used. From a practical viewpoint, we have identified what some key
information that should be included in documentation, and we have identified when some key
information should be made available. From a theoretical viewpoint, we have quite frankly
raised more questions than we have answered. But that’s good, too. Documentation is like a
gold mine; the riches are there; but, not surprisingly, the difficulty of ferreting them out is
directly proportional to their value.

E. Soloway
Yale University
6 of 6

Empirical Research on the Design Process:
The Field Study

Vincent Shen, Herb Krasner, Neil Iscoe, & Bill Curtis
MCC Software Technology Program
Austin, Texas

Introduction

MCC’s Software Technology Program is charged with providing its shareholders
with technology that radically improves the productivity and quality of developing large,
complex systems. The program has focused on developing technology for aiding the
requirements and design process (the “upstream™). As a part of this technology
development program, we have a team of 5 research scientists working full-time on
empirical studies of the design process. Our presentation will describe one of the studies
we have conducted, the initial observations drawn from it, and the implications of these
observations for modeling the software design process and guiding the development of
design technology.

We are conducting studies of the design process at each of three levels. At the
individual level, we are studying design as a cognitive problem-solving process. At the
team level, we are studying design as a social interaction process whose goal is to
communicate and negotiate mental representations of the behavior of the application
system and of the computational structure required to implement it. At the organizational
level, we are studying design as the integration of numerous processes (managerial,
technical, customer interaction, etc.) that emerge in large organizational endeavors. This
presentation will describe initial results from our studies at the organizational level.

Previous Studies of Large Systems Development

Since the mid-1970s, many corporations have been collecting data on the
productivity and quality of their large system development projects. These data are often
used to determine the major factors affecting productivity and quality in a particular
programming environment. These factors are frequently used in driving project cost
models. Four of the more important studies were:

1. IBM Federal Systems Division [WALS77]. Walston and Felix of IBM
analyzed 60 reports from project managers. They were interested in identifying
the primary factors that affected overall productivity. Of the eight factors
identified, two related to the difficulty of interacting with the customer, while

V. Shen
MCC
1 of 24

four involved personnel experience and qualifications. The other factor related
to the amount of documentation required.

2. TRW Defence and Space Group [BOEHS81]. Boehm collected 63 sets of
project information from managers and fellow researchers. The most
important factor related to the capability of the personnel assigned to the
project. The next three factors involved product complexity, reliability
requirements, and timing constraints. Boehm used the data to develop his
COCOMO cost estimation models.

3. ITT Programming Technology Center [VOSB84]. Vosburgh, Curtis,
Wolverton, and four others of ITT studied 44 reports from project managers.
They found that factors under management control accounted for 1/3 of the
variation in productivity. However, factors that were not under management
control, those related to the business area, also accounted for 1/3 of the
productivity variation. No one factor was sufficient to guarantee improved
productivity.

4. IBM Santa Teresa Laboratory [SHENS85]. Shen, Yu, and Thebaut of Purdue
University and Paulsen of IBM studied the historical databases of four projects.
They analyzed about 1,400 sets of module-level data and identified several
factors that could serve as predictors for error-prone modules.

Although these studies identified important productivity and quality factors, they
generally did not elaborate the process through which these factors exerted their influence
on the project. The field study reported here was similar to these other studies in the
variety of projects involved, but is different in its emphasis on describing how factors
exert their influence during the design process. This difference was achieved by
collecting a different form of data than had been collected in the studies cited above.

Field Study Design

The field study was designed to gather information from MCC shareholders for
input as requirements to our large systems design environment. We have conducted a set
of interviews at field sites with members of the design team on 19 large projects. Our
purpose was to identify the primary leverage points (i.e., problem areas) in productivity
and quality to attack in our research on design environments.

The application areas of the projects studied included avionics, telephony,
operating systems, and factory automation; and included projects that contained
real-time, distributed, and/or embedded components. These projects were drawn from
nine multi-billion dollar corporations in such businesses as defense contracting, computer
manufacturing, commercial products manufacturing, and telecommunications. On each
project we interviewed the senior systems engineer, the senior software designers, and the

V. Shen
MCC
2 of 24

project manager. Often we were also able to talk with someone from testing or quality
assurance, a customer, and a division vice president. The interviews were structured with
a set of questions designed for each type of position interviewed. Yet the structure was
flexible, and was designed to get the interviewee to expound on specific issues or
problems faced in desiging their particular application. Interviews typically lasted one
hour, but interviews with senior systems engineers frequently ran much longer.

During these interviews we focused on: 1) how requirements came to be known
and how they were changed, 2) how design decisions were reached and how often and
through what mechanism they were changed, 3) what, if any, communication was
conducted with customers, users, contracting officers, etc., 4) how design information was
communicated among the members of the project, 5) how people were organized at
various points during the project, 6) what types of tools were used, and what types should
have been available, but weren’t, 7) the nature of the hardest design problems faced and
how were they tackled, 8) how design was represented at various stages, and 9) how
software development was integrated with hardware development.

Observations on Individual Talent

We have identified two types of rare individual talent that frequently develop on
projects. The first is that possessed by superdesigners (typically a senior systems
engineer). Their talent comes only with a deep understanding of the application domain
(avionics, telephony, etc.). It is manifest in their mapping between the behavior exhibited
in the application system (how the jet flies and delivers ordinance) and how the
computational structure (the software) controls it. Thus, they are mapping between
several domains of expertise, only one of which is trained in computer science (the
computational domain). The maintenance and communication across project members of
a consistent representation scheme for this mapping is the crucial element in managing
the development of a system design, and this function is typically performed by the senior
systems engineer, not the project manager. This skill will be extremely difficult to
automate, since it requires mapping across multiple domains of expertise, a capability not
performed well by current expert systems technology.

The second type of rare individual talent is the systems diagnostician. This is a
skill that emerges during the development of the system and is possessed by the
individual who is sought out for answers on why something doesn’t work. This skill is
more amenable to automation than that of mapping application behavior into
computational structures, since the information required for developing diagnostic
expertise is available in the structure of the software.

Because of the crucial role that application knowledge plays in the design of a
system, those few who possess it at a level of expertise have tremendous individual
leverage in directing the course of a project. We have seen numerous instances where a
large design team was taken over by a few individuals who controlled the rest of the
design process. That is, if a coalition forms among a few individuals who share a
common model of the behavior of the application or of the computational structure to

V. Shen
MCC
3 of 24

implement it, they can exercise the power of a majority because other team members are
unable to gain consensus for their ideas.

Observations on the Design Process

There are several stages of the design process that are never explicitly represented
in software process models, but which are absolutely crucial to the success of the project.
These danger of leaving these stages out of a process model is that insufficient time is
factored into the project schedule for these activities, and they are therefore frequently cut
short to the detriment of productivity an quality later in the project. The first of these
stages involves the exploration and selection of a format for abstracting and representing
the important features of the application and its behavior. The next stage is the
communication and coordination of a common model of the application behavior and
computational structure for controlling it among the members of the project. Finally,
there is the negotiating and reprioritizing of system features when the underlying tradeoffs
in the design are understood.

The stages described above represent a learning process for most of the members
of the project. The extent of this learning process will differ by the newness of the
technology or the application involved in the project. However, projects are usually
planned as if the learning process is a constant, and is small. The coordination of
common models and understandings among project members is usually assumed to occur
quickly and completely. However, learning is a large consumer of project time in the
early phases. When it occurs incompletely it leads to design and interface errors. The
representation of these activities as stages in design allows them to be estimated more
accurately and planned for purposely.

The amount of time required to learn the structure and behavior expected of a new
application is sufficiently great that we often found the best prototype to be a failed
project. A prototype which does not exercise the full range of application behavior and
function will not provide sufficient learning to design the system correctly. It was through
trying to develop the full system and failing that the underlying structure of the
application domain was sufficiently teased out to support a successful redesign. This is
the ”phoenix syndrome” and it is a function of the amount of design experience required
to understand the underlying structure of a new application area.

The following presentation contains an elaboration of one set of our results: The
Top 5 Problems in Large Development Projects.

V. Shen
MCC
4 of 24

PNy R $ 4T 2" 4

N R $#T— W T W - 4 2w

References

[BOEH81] Boehm, B. W. Software Engineering Economics.Englewood Cliffs, NJ:
Prentice-Hall, 1981.

[SHEN85] Shen, V. Y., T.J. Yu, S. M. Thebaut, and L. R. Paulsen. Identifying
error-prone software - an empirical study. IEEE Transactions on Software
Engineering, 1985, 11 (4), 317-324.

[VOSB84] Vosburgh, J., B. Curtis, R. Wolverton, B. Albert, H. Malec, S. Hoben,
and Y. Liu. Productivity factors and programming environments. Proceedings
of the Seventh Internatioanl Conference on Software Engineering. Washington,
DC: IEEE Computer Society, 1984, 143-152.

[WALS77] Walston, C. E. and C. P. Felix. A method of programming
measurement and estimation. IBM Systems Journal, 1977, 16 (1), 54-73.

V. Shen
MCC
5 of 24

H O E s e E e N TN EEE .

THE VIEWGRAPH MATERIALS
FOR THE

V. SHEN PRESENTATION FOLLOW

V. Shen

MCC
6 of 24

welbo.id AbBojouysa] aiemyos 99N

SILNY ||Ig '® ‘©09S] [IBN ‘Udused)| qioH ‘Uays JUadUIA

AdNLS d13id 3HL
:5S3004dd NOIS3d FHL NO HOHV3S3YH TvOIldIdiNG

V. Shen

MCC
7 of 24

ajenbape si yoieasal uoneuswajduw buisixg

swia)sAs asemyos xajdwod o ubisop ayy pie ued sieinduiod
ABojouyoay uonejuswajdui pabbe| sey ABojouyos) ubisaq
uBisap pue sjuswadinbal Ul s| abeans] 1sarealb ayl

OQHVYNO3I1 :1INJWNOHIANI NDIS3A V 30NA0Hd OL HOHVIS3H

swoysAs xo|dwod ‘abe| Buidojonap jo Anjenb
pue Ajanonpoud ay} ul saseasoul Aleulploeixa
0} spe?9| 1ey) Abojouyoa} alempyos mau ajeald

NOISSIN

WVHO0Hd ADOTONHO3IL IHVMLI0S OON

Aojewayuodn

V. Shen

MCC
8 of 24

uonenjens
asn-yj

aAnenjens

sjuswiLiadxa
Jusuodwon

Aiojelojdxg

siybisul pue
sasayjodAH

dlS NI HOHV3S3H TTVOIHIdNT 40 31704 3HL

JONIOS
Apris plald 199(d0 ¥ ~a— so|pnjs [eouidwig

p4 4

[euoneziuebio dnosy aAnubod -a— SISAjeue JO [9A97

- _ .

V. Shen

MCC
9 of 24

109(01d

co_HNEmm._o |

NDIS3A SINILSAS IOHVT DNILOI4dV S3SSI00Hd

S19A19SGQ k
wea}
B R i T CRD

10 of 24

Jaquisw)

V. Shen

Q

= @)

www__m“wanm . _ﬁhwWW@ - souswpedxy uedopred 7 =
$$920.d uoiesuUNWIWOoo sjo9lqo Bujwwelb uoissas "1y
pue Bupjew-uoisioap ~o.d 10} 210} Juau Z 9suajul ue Buunp
A9y} [opow 0} sjoaloud —ewad pjing pue SJ01BAJJO JO 19S B 10}
juswidojanap abe] 61 ubisap 0} poye ‘ow 2In}onu}s [04ju09 ayl

Jo siaquisw Aay yum / & woJj} sbunssw Bulubisep siowwiel

UM SMaIAIBUI pajielaqg wea} padelospip —0.d paouauadxe g
Apnis pjoi4 "dxa J9/I3s 193lq0 JusuwiLIadxa Yi

|

SS300dHd NOIS3A FHL NO HOHV3S3IYH TVvOIHIdINT

V. Shen
MCC
11 of 24

swiajqold ubisaqg -
sanss| Jajsuesy Abojouyos] -
sjuiod abeiona) Aoy -

BWOISNY sjuawalinbal opJeuoa -

VO / bunsal :Aynuapl o1
Jabeuew [eiouab uoIsinIg . .

Jabeuew j03foid sassa004d uonesIuNWLLIoD —

siaubisap aiemyos Jojuas sossao0.4d Bupjew-uoisioaq -
Joauibua waysAs syoaloid Jua.Ling [opowl 01
S33AMIINHALNI 3S0ddNnd

AdNLlS ai3did

"1sAs bunetado Jo 1ed . A M0S 9L 61l
|]OJlUOD B puBWWO) A A ~ M0SL PIN 8l
|0J}U0D $S390.d A A A A0S PN Ll
[0J}UOD B PUBWIWOY A A oot Alre3 9l
|03U00 3 puBLILOD A A A A WOS | “iuew Sl
Auoydajay A A ajeT 14]
|0JjJu0d ojpey A ~ e ajen gl
(asemyos) avo NOEL e 4}
|0JJUOD ¥ puBWWOY) p A JUley L
(asempiey) qvo A N0L PIN ot

uoddns aiemyjos 0 "wis L 6

"1sAs Bupesado jo ued h (1114 JUey 8

J9pdwon a1eT .

Jajidwo) A0SE °1eq 9

"1sAs bupelsadg MSZL | Cwen S

Buisseoo.d “sueu] ~ ASS 91eT v

Buissasoud ‘suesy - M00€E PN €

Auoydaja A ~ M00S PIN 4

Buissaoo.d 'sues] 0oy "JUleN l
uoneoljddy Azewild | pealosuodsg| pappeqwz | peainquisig | awil-jesy | oz obeis ‘foid

JUBWIUIBAOY)
ainjeN

d3AIAHNS S1O3rOoHd 3FOHV

V. Shen
MCC

12 of 24

V. Shen
MCC
13 of 24

Jajsuesy Abojouyoal ‘G

sisfjeue pue uopejuasaidal ubisag b
abueyo pue Ajurepaoun yum buieaq 'S
UOI}eUIpPJ00D puk uoiedIuNwWWo) ‘T

[ouuos.iad 1

S.103rodd LN3INdO13A3A 30UV
NI SINIT904d S 4Ol 3HL

Jabeuew ainjeaq ®

V. Shen
MCC
14 of 24

ueronsoubeiq °
Jojuswadwy °

ladoay| ajen °
Jauueds Aepunog °
Jazjenideouo) °
i1sijeloads uonesiddy °

Wwea} aAI}09)Jd Ue pjing oL

- [ouuosSiIad |

V. Shen
MCC
15 of 24

*0]19 ‘UOI109]9p UMOp-)eaiq UoRedIuNtuod
‘uonjeolpuapl ajod “Bra- iomau jewsiojus ayy 1o uoddns pasN

V. Shen
MCC
16 of 24

uoneAldap uoneuwLou] ®
Aejop uonew.o] °

PEOLISAO UONEW.IojU] °

Aym ‘ataym ‘uaym ‘reym ‘oym mouy oj

— Uoljeu|pi00d pue uonesuUNWWo) g

V. Shen
MCC
17 of 24

"UOIJeWLIOJUI JUBASID] O} SS8d0e
yoinb poddns ey saqoid anioe pue sy Juabieiul pasN

V. Shen
MCC
18 of 24

- ABojouyoa| -

spiepuels - o|doad -

sainpadoid pue Adljod - s|eox) -
(uoneuuoyu; mau) abueyy o

uoneuLioju; bugoipuo) —

uonew.oyu buissipy -

(sanssi buneoyy) Ajuierisoun @

110}}d palsem aonpal o]

— abueys pue Ayureniasun yum buijeag ‘¢

V. Shen
MCC
19 of 24

-noydxa sjoeduwl Jivy} pue
‘sabueyo ‘sanssi Buiyeol} ay} ayew o} spoyiawl sno1obu pasN

S[epow uonenwig —

V. Shen
MCC
20 of 24

s|jopouw [eanAjeuy -
sisAjeuy °
sadAjoj04d -
solyde.r) -
Ol Ry
BIpaW uonejuasaiday ®

‘9jeuonel pue snjejs 9y} pi03J3al1 0]

~ sisAjeue pue uonejuesaidas ubisag ‘b

V. Shen
MCC
21 of 24

*Spaau S Jowojsno Azzny ayy
yum ubisap ayj Jo Joineyaq sy} aiedwod o} swisiueyoaw pasN

V. Shen
MCC
22 of 24

aoue)sisal ainyn))
JUSUSSOSSY °

SSoudleMy °

S|00} 9|gejieA. }Sa(ay} 9sh 0]

— 19jsued} ABojouydsda]l ‘S

V. Shen
23 of 24

MCC

*Jojsued} Abojouyosy
10 sjopow Bujuiea] 19} 0} sjuawiiadxs 1oNpUod 0} PaaN

“19)sued} ABojouyos} Jo siepow Buluies) 1s9) 0} syuawiddxgy g

V. Shen
24 of 24

MCC

"Spaau S awolishd
Azzny ay} yum ubisap ay} Jo Joineyaq ayl aiedwod 0} SWSIUBYOIN ‘¥

uoydxe sjoedu Jloy pue ‘sebueyo
pue sanss| Buneoj} Jo uoneoyioads ay} ayew o} spoyiaw snotobly ‘e

"UOIBWLIOJUI JUBADIDJ
0} ss999e Moinb poddns jeyy saqoud aanoe pue sty wabyEu 2

*0}9°UOI10319p UMOp-Xea.lq UoNEIIUNWWOD
‘uoneoypuapl ajo4 “Ha — ylomiau jewiojul ayy Joj poddng °L

:sSpaau Buimojjoj ayy bunssw
uo pasnooy} aq pinoys Husaulbua swivsAs xajdwod ab.ej ul yoieasay

SuoISN|ou0)

A Quantitative Analysis of the Impact
of Modern Software Engineering Techniques
on Software Quality and Development Productivity

J. E. Gaffney, Jr.
T. M. Drabant
W. D, Ceely

IBM, Federal Systems Division
Gaithersburg, Maryland

J. Gaffney
IBM
1 of 11

ABSTRACT

The IBM Federal Systems Division has made a considerable capital
investment in its 'software business' through the institutionalization of
an integrated set of modern software engineering techniques and
technologies. This paper addresses-the question, "Has this paid off?" It
does this by considering in a quantitative manner, the value of the use of
modern software engineering techniques/technologies in terms of their
effects on software development productivity and quality. Specifically,
the paper presents a quantitative analysis relating the degree of use of
several software engineering approaches to these topics. This degree is
presented as a single number, the 'software process technology index.'

OVERVIEW

Realizing that technology is the key to attaining consistency in the
software development process in terms of higher productivity and
increasing levels of quality in the resultant software product, management
of the IBM, Federal Systems Division in the late '70's instituted the
development and codification of a set of practices and standards and a
formal education program aimed at institutionalizing their use in all of
FSD's software development organizations. Some of the practices thus
presented in an integrated fashion to FSD technical and management
personnel (indeed, upper level software management people preceded
technical people in the courses) were based in part on extant approaches1
such as the design and code inspections conceived by Mike Fagan, of IBM.
Other aspects of the body of software technology presented were new, such
as the language (PDL or Process Design Language) to be employed to
formally record designs. Indeed, the education program emphasized the
use of formal software process strucgure with defined activities and
resultant products produced by each. The FSD software education program
was the precursor to that of the IBM Software Engineering Institute, a
principal component organizational element of the IBM Corporate Technical
Institutes.

The 'software process technology index' presented here is a measure of the
degree of use of the body of software technologies. By relating this
index to software development productivity and quality, we can obtain an
assessment of the degree to which this investment has 'paid off.' Our
data suggests that higher levels of development productivity and lower
levels of error density (upon initial shipment of the software) are
associated with higher levels of software technology having been
incorporated into the software development process.

The software development process technology index is a number in the range
0-100. It has been evaluated for a variety of large FSD projects totaling
more than 3.8M source lines of code. These software efforts took place at
two current and one former FSD locations; Gaithersburg, Maryland and
Houston, Texas in the first instance and Wayland, Massachusetts, in the
second. The 'software process technology index' number signifies the
degree of application of the thirteen process and two education attributes
presented in Table 1.

J. Gaffney
IBM
2 of 11

Table 1. Software Process Technology Index Attributes

ATTRIBUTES

1. INSPECTIONS

2. STRUCTURED PROGRAMMING

3. STRUCTURED DESIGN LANGUAGE

4, FUNCTION MODEL

5. STATE MACHINE MODEL

6. NETWORK MODEL

7. STRUCTURED SPECIFICATION LANGUAGE
8. UNIT TESTING

9. DEVELOPMENT INTEGRATION TESTING
10. FUNCTION TESTING

11. SYSTEMS TESTING

12, PERFORMANCE AND LIMIT TESTING

13. USER TESTING

14. MANAGEMENT TECHNOLOGY EDUCATION
15. NON-MANAGEMENT TECHNOLOGY EDUCATION
SCORING

1. SCORE EACH ATTRIBUTE 0-16 POINTS
2.

INDEX = (SUM OF THE ATTRIBUTE SCORES) x (100/240)

J. Gaffney
IBM
3 of 11

XAANI XO0TONHOIL SSAI0Yd FYVMIJIOS °SA ALIAILONAOYd INTHAOTIAIA TIVMIJI0S JAILVIA T q9no1d
>
[}
rm —
59 09 55 05 Sb ov s¢ ot 0 S
- f } } } } } H OUs 3
X3ONI ADOTONHI3L -0
$53904d
JUVYMLL0S
+s0
— - - o
) e ——
. — - -
. ——— . 10t
— — -
451
402
Y

ALIAILONAOYd
IN3IW4013A3Q
JYYMLIO0S IAILYI3Y

XIANI XAOO0TONHOIL FYYMILIOS °“SA INIILNOD ¥0o¥¥d JINIILVT FIAILVYIAYN ¢ FdNOIA >
£ =
mw —
<5 09 S5 05 sv oy s oc -
X3aNI ADOTONHI3L o ==
mwwuom& ° L)
34VYMLIO0S
/ []
~
~
~ 50
S~
~
~
~
~
~ .
~
. ~ FO'L
~
S~
~
~
~
~
~
~
. ~ ~ g1
S~
~
S~
[4
K4
Y

SHOHY3 IN3LVI 40
Y38WNN 3AILVIIY
Q3LVINILS3

The 'software process technology index' is determined by interviewing the
software development manager, and/or appropriate members of the software
development team, about the degree to which each of the fifteen attributes
apply to their project. Each of the attributes, then is given a score in
the range 0-16. The total possible score is 240, therefore. The actual
score is normalized to be in the range of 0-100 by

multiplying the total actual score by 0.4167 = 100.
240

Thus, the total score may be considered to be a percentage of application
of the attributes of modern software technology as dimensioned by the
attribute list given in Table 1. Each of the attributes has four
sub-attributes which are evaluated in the development of an ‘'attribute
score.' For example, attribute number 5, 'State Machine Model," has four
components: category of product covered, amount of product covered,
degree of technological rigor (with which the model is used), and degree
of enforcement of the technology. Each of the other attributes has
sub-attributes, correspondingly appropriate to the aspect of the software
development process with which it deals. More generally, one may think of
each of the attribute scores to be a quantification of the degree of
applicability of that item to the development process indicative of the
degree of technological rigor and the degree of enforcement used to
develop a particular element of software.

Technology Index versus Productivity and Error Content

This section provides some data which relate two key measurables as
indicators of the software and the process used to implement it to the
'software process technology index.' These measurables are the software
error content, and the development productivity. The index values have
been found to have a reasonably strong positive correlation with
development productivity and a relatively significant negative correlation
with the (estimated) error content of the software.

Figure 1 is a plot of relative values of development productivity and
software process technology index; a 'best fit' line to the data is also
shown. The 'relative' values are normalized with respect to one of the
productivity values. Figure 2 is a plot of relative values of estimated
latent (or post ship) errors and corresponding 'software technology index
values,' a 'best fit' line to the data is also shown. The relative values
are normalized with respect to one of the software product's (estimated)
latent error values.

The latent error content of each software product was estimated using ag ¢
tool, coded in BASIC that runs on the IBM personal computer. This tool™’
estimates the number of errors to be detected in later phases of the
development process as well as the latent error content, based on the
number of errors found during the inspection processes.

Also note that this 'software process technology index' values used in
composing these plots and in computing the correlation coefficients were
computed applying equal weight to each of the fifteen attributes listed in

J. Gaffney
IBM
6 of 11

Table 1. It is likely that their effects on productivity and quality are,
in fact, not uniform.

The sample (linear) correlation coefficient of relative productivity with
technology index was found to be 0.697. The corresponding figure for
latent error content and technology index was found to be - 0.582. These
figures, while not high if evaluated on the same basis on which medical
experiments are considered, are reasonable for the computer science field
and suggest the 'value added' by software technology. This was a
principal purpose of the quantitative analysis reported upon here. The
former figure means that 48.6 percent of productivity variation is
explainable by the variation in software process tﬁchnology index. The
latter figure suggests that 33.9 percent (=(0.582)" x 100) of the
variation is explainable by the software process technology index.

These plots and correlation coefficient values do suggest valuable trends,
supporting continued use and expansion of the application of modern
technology because of its potential impact on the business in terms of
supporting the goals of higher productivity and reduced post-ship errors.
The average of about 50 for the software process technology index and
about 62 for the peak found so far in the projects we have looked at
suggest that there is a lot that can yet be done to further exploit the
potential for software process technology in the 'software business.'

Figure 3 provides a plot of relative software development productivity
versus relative latent error content (the independent variables shown in
Figures 1 and 2, respectively); a line fit through the data points is also
shown. The data suggest that higher values of productivity and lower
values of latent error content are associated. The sample correlation
coefficient value is - 0.6724, which means that 45.2 percent of the
variations of one variable is 'explainable' by the other. The negative
correlation between development productivity and latent error content
suggests that higher degrees of software quality need not be realized at
the expense of productivity.

The software process technology index was also evaluated as a function of
time, specifically with respect to the date of delivery of the software
product whose development process was evaluated. A positive trend was
found as shown in Figure 4.

J. Gaffney
IBM
7 of 11

ESTIMAIEU
RELATIVE NUMBER
OF LATENT ERRORS

?

2.0 —
\
\
\
\
1.5 — \
\
\
\
\
\
1.0 — \ [}
e\
\
\
\
05— \
\
® \
\
\ RELATIVE SOFTWARE
y . DEVELOPMENT PRODUCTIVITY
0 | I T -
0.5 1.0 15

FIGURE 3 RELATIVE LATENT ERROR CONTENT VS. RELATIVE PRODUCTIVITY

J. Gaffney
IBM
8 of 11

7y
fn —
(W1l) 31v0 AU3ATT30 "SA X30NI ABOTONHIIL SS3008d JUVALIGS 7 ANmoTx S
— 8o
<2 s v861 £861 z861 1861 0861 6461 861 161
| ! ! _ | | | | |
MIAIIIQ 40 3LV
—{osz
—{oge
®
®
'
e —_ —{0'GY
\ \
° —— -_ []
— —{o'ss
- °
L
—o's9
Y

X3aNI ADOTONHO3L
$S300Hd IHVYMI140S

APPLICATION OF THE SOFTWARE PROCESS TECHNOLOGY INDEX

The Software Process Technology Index and its quantitative relationships
to productivity and quality indicators, such as latent error content, can
be used for various management oriented activities such as:

o} Estimating the likely effects of potential changes in software
process technology or productivity and quality ("What's the
payoff?")

o Estimating the effect in uncertainty of the applicability of

some element of technology in a certain development situation
("What's the risk?")

o Validating estimates of development costs ("Are the productivity
and technology use levels proposed by the developer
compatible?")

Software developers and management personnel can employ empirically
derived quantitative relationships between the technology index and
productivity or latent (post-ship) error content to validate an estimate
of new softxage productivity or quality obtained using other

techniques. ’° Also, such relationships between the technology of the
software process and the resultant software product might be used for
planning purposes, such as for predicting the possible impact on software
development productivity or the quality of the delivered software product
of proposed improvements in the technology being used in software
development.

The authors believe both intuitively and from specific empirical
observation that the higher the Technology Index is for a software
development project and its associated process, the higher will be the
productivity of the software engineers and the quality will be better of
the software they develop, in terms of residual latent defects of the
delivered product. Data presented supports this belief.

Specific benefits of higher technology index scores that have been
detected include the following:

o Fewer errors inserted into the developing product.
o Earlier detection/removal of inserted errors.
o Better predictability of schedule and cost of development; the

authors deduce that these benefits accrue from using a well
defined and automated software development process. It would
include mechanisms for preventing error insertion (syntax
directed editors, and the like), early error detection, (formal
inspections, static and dynamic design/code analyzer) confidence
raising (automated test generators, coverages measures) and
clearly specified criteria and enforcement mechanisms for entry
into and exit from each phase of development.

J. Gaffney
IBM
10 of 11

REFERENCES

Fagan, M. E., "Design and Code Inspections to Reduce Errors in

Program Development,' "IBM Systems Journal," Volume 15, Number 3,
1976, Page 182.

Linger, R. C., et al, "Structured Programming: Theory and Practice,"
Addison-Wesley, 1979.

Quinnan, R. E., "The Management of Software Engineering, Part V,"
"IBM Systems Journal," Volume 19, Number H, 1980, Page 466.

Gaffney, J. E., Jr., "On Predicting Software Related Performance of
Large-Scale Systems"; Proceedings of the 15th Conference of the
"Computer Measurement Group,' CMG XV, December, 1984, San Francisco.

Gaffney, J. E., Jr. and Martello, S. J., "A Model For Prediction of
Latent Errors Using Data Obtained During the Development Process,"

9th Software Engineering Workshop, NASA, GSFC, November, 1984 (Page
196, "Proceedings").

Gaffney, J. E., Jr., "On Predicting Software Related Performance of
Large~-Scale Systems,'" CMG XV, December, 1984, San Francisco; also
printed in the "Proceedings of the 15th Annual Conference of the
Computer Measurement Group."

J. Gaffney
IBM
11 of 11

PANEL #3
SOFTWARE ENVIRONMENTS
E. Spafford, Georgia Tech.

B. Boehm, TRW
T. Wasserman, IDE, Inc.

The MOTHRA Software Testing Environment*

Richard A. DeMillof
Eugene H. S pafford

Software Engineering Research Center
Georgia Institute of Technology
Atlanta, Georgia 30332-0280
+1 404 894-3180

ABSTRACT

The value of software testing in the development of large software sys-
tems is well-documented. Unfortunately, the development and employment
of an integrated test plan is often avoided due to the costs associated with
testing. These costs include more than just capital expenses associated with
obtaining test systems and software. They also include the time and effort
involved in educating personnel in the use of the testing system, the time
taken to run the tests, and the costs of rerunning the tests after errors are
found and corrected. Furthermore, some forms of testing are difficult or
impossible to run incrementally, and they produce results which may be diffi-
cult to use in correcting or enhancing the tested software.

The MOTHRA Environment is an integrated set of tools and interfaces
that support the planning, definition, preparation, execution, analysis and
evaluation of tests of software systems. The support provided by MOTHRA is
applicable from the earliest stages of software design and development
through the progressively later stages of system integration, acceptance test-
ing, operation and maintenance. MOTHRA has been designed to address some
of the cost concerns mentioned above. Two primary design criteria, in partic-
ular, are significant in this regard. First, the MOTHRA interfaces—particularly
user interfaces—are high-bandwidth. This allows us to present more informa-
tion during testing and retesting. Coupled with proper design and integration

with familiar displays, it should obviate the need for extensive training to use
MOTHRA.

Secondly, the overall MOTHRA architecture imposes no a priori con-
straints on the size of the software systems that can be tested in the environ-
ment. The practical meaning of this criterion is that the same architecture is
able to service programs varying in size from individual moduleg of less than
10 source lines to fully integrated systems of more than 10 lines. The
human user—the tester—is able to apply comparable functions across a fami-
liar interface as the software being tested evolves in size and complexity by
several orders of magnitude. In fact, the only indicators of size or complexity
that have ties to the MOTHRA architecture are the operating system cost penal-
ties and performance delays inherent in manipulating massive objects. All
other costs and resource demands are under the direct control of the tester.
In most cases, the tester will choose to allow critical resources such as time or
memory to grow linearly with program size and complexity. The tester may,
however, choose to conserve these resources by sacrificing other resources
(e.g., dollars) or even by reducing the fidelity of the test. These are ulti-

E. Spafford
Georgia Tech
1 of 32

mately economic decisions determined by the relative costs of tests and
failures—MOTHRA does not legislate or even favor one kind of decision in
preference to another.

An important mechanism for meeting these criteria is that MOTHRA is
reconfigurable, allowing the integration of user and system tools with which
the tester may already be familiar, and allowing the system to make use of
different underlying hardware architectures of differing capabilities. We
address this in MOTHRA by the use of thematic tools for software testing. It
has been our experience that software testing is most effective when the test
procedures can be reduced to a set of well-understood and natural activities.
Since MOTHRA supports tests of both very small and very large programs, the
details of the tools that are actually invoked vary in power and scope. How-
ever, even very different tools can implement basic themes that are carried
along throughout the several phases of testing. For example, programmers in
modern development environments interact increasingly with an array of very
powerful source language debuggers. Even though formal testing methodolo-
gies and debugging are very different activities, the debugging theme can be
used as a metaphor to carry the tester from tool to tool as the software being
tested evolves.

One MOTHRA system has been constructed using the AT&T Bell Lab

Blit interactive bitmap display terminal running under the control of a UNIX
window manager called Layers. The host environment is a modestly config-
ured VAX 11/780 running UNIX 4.3 BSD. Another version has been imple-
mented on VAXstations™ running Ultrix 1.2 and the X Window System.
However, the architecture of MOTHRA encourages re-hosting. Furthermore,
explicit operations allow MOTHRA processes to spawn parallel and vectorized
processes for execution by a Cyber 205 (or any other powerful parallel
machine).

January 23, 1987

* The work presented in this paper was funded, in part, by RADC contract F30602-85-C-0255.
t The authors may be reached by e-mail addressed to:

Internet: rad@gatech. EDU spaf@gatech. EDU

uucp: ...{akgua decvax,hplabs,seismo} !gatech!{rad spaf}

® UNIX is a registered trademark of AT&T Technologies.

E. Spafford
Georgia Tech
2 of 32

The MOTHRA Software Testing Environment®

Richard A. DeMillo”
Eugene H. Spafford

Software Engineering Research Center
Georgia Institute of Technology
Atlanta, Georgia 30332-0280
+1 404 894-3180

1. Introduction

The MOTHRA Environment is an integrated set of tools and interfaces that support the
planning, definition, preparation, execution, analysis and evaluation of tests of software sys-
tems. MOTHRA is designed to be used starting at the earliest stages of software development

and continuing through the progressively later stages of system integration, acceptance test-
ing, operation and maintenance.

The MOTHRA system satisfies three primary criteria. First, its interfaces—particularly
user interfaces—are high-bandwidth. Second, the overall architecture imposes no a priori
constraints on the size of the software systems that can be tested in the environment. While

these seem to be unrelated criteria that address issues at differing levels of detail, they are, in
fact, closely linked.

Since the ability to process very large integrated software is an explicit design goal,
increasing the effective feedback bit rate! along key interfaces is an obvious way to design for
acceptable functional performance. The bandwidth of the interface is simply the feedback bit
rate that it supports. Bitmap displays and windowing are the usual means of increasing the
bandwidth of user displays, for instance. Less obvious are techniques which increase the
effective bit rate by graphical compression, statistical sampling, and analog representations.
In MOTHRA information is highly compressed for presentation to the tester. This provides a
high-bandwidth user interface in which structural and dynamic information is summarized
graphically and exact representations of algorithm and program behavior are replaced by
inexact animations of behavior, higher-order descriptions of process execution, and non-
procedural specifications of program function.

The practical meaning of the second requirement is that the same architectgre should be
able to service programs varying in size from jndividual modules of less than 10~ source lines
to fully integrated systems of more than 10 lines. That is, the human user—the tester
should be able to apply comparable functions across a familiar interface as the software being
tested evolves in size and complexity by several orders of magnitude.

In fact, virtually the only indicators of size or complexity that have ties to the MOTHRA
architecture are the operating system cost penalties and performance delays inherent in mani-
pulating massive objects. All other costs and resource demands are under the direct control
of the tester. In most cases, the tester will choose to allow critical resources such as time or
memory to grow linearly with program size and complexity. The tester may, however,
choose to conserve these resources by sacrificing other resources (e.g., dollars) or even by
reducing the fidelity of the test. These are ultimately economic decisions determined by the

1 This use of the term feedback bit rate is apparently due to S. C. Johnson and refers to the natural
measures of work and efficiency in software development environments. Roughly speaking, the feedback
bit rate is the number of bits transferred across an interface (from host to user) per atomic user interface
operation.

E. Spafford
Georgia Tech
3 of 32

relative costs of tests and failures. MOTHRA does not legislate or even favor one kind of deci-
sion in preference to another.

The key to this approach is to design an environment in which most primitive operations
are implemented as local transformations of data objects. Global operations, on the other
hand, are never applied to these objects but rather are defined in terms of primitive transfor-
mations of more complex afomic objects.2

MOTHRA satisfies these requirements by first organizing the user interface around a
high-resolution bit map display with adequate graphics and windowing capabilities and,
second, by using the display as a tester’s view into a larger (virtual) test context. A view is
defined by a consistent set of object instances that comprise a meaningful state for the
MOTHRA system. Such a state contains sufficient information for applying a set of primitive
operations and generating test-related data and results in the form of new object instances.
The tester need have only a dim idea about the representation or physical location of aspects
of the test which are not in view. As a matter of fact, the total context of a sufficiently com-
plex test may not be meaningful to a software tester at all; in this instance, a large team of
testers will each have differing views of the test, the total context of which is really only
understood by systems engineers.

One of our major concerns has been to make MOTHRA reconfigurable. For the most
part, MOTHRA does not attempt to re-create capabilities provided by the environment in which
it is hosted. The guiding principle has been to structure MOTHRA as a subenvironmentDeMi86
of an overall software development or support environment. This implies both a certain clo-
sure and a robust interface. The MOTHRA architecture supports as a function any meaningful
composition of basic functions. This is accomplished through an object-oriented architecture
and user interface. There are several motivations for not viewing MOTHRA as highly
integrated into a2 more global host environment. Foremost among these are the need for iso-
lation and protection of test-related processes.

This same goal is also addressed in MOTHRA by the use of thematic tools for software
testing. It has been our experience that software testing is most effective when the test pro-
cedures can be reduced to a set of well-understood and natural activities. Since MOTHRA sup-
ports tests of both very small and very large programs, the details of the tools that are actu-
ally invoked vary in power and scope. However, even very different tools can implement
basic themes that are carried along throughout the several phases of testing. For example,
programmers in modern development environments interact increasingly with an array of
very powerful source language debuggers. Even though formal testing methodologies and
debugging are distinct activities, the debugging theme can be used as a metaphor to carry the
tester from tool to tool as the software being tested evolves. For example, program
mutationDeMi78,Budd81, Howd82 requires testers to construct sets of tests to demonstrate that
certain basic design and programming errors are not present.3 A fundamental activity in pro-
gram mutation is revealing bugs in the mutant programs. Powerful debuggers are therefore
useful tools during the tests and can be carried along as thematic tools. Many other test
methodologies can, in turn, be reduced to mutation testing.Ase79,Budd8l Thys, these metho-
dologies can also be supported by the thematic tools.

2 We use the term object to mean a collection of data and operations on that data. An atomic object is
one which allows only atomic operations, in the sense of view atomicity.Alc83 We do not address concepts
like reliability or fault tolerance with the design of MorsRrA. Further, the exact structure of these objects
(active or passive, etc.) does not matter. The object paradigm is intended as simply a design approach to
the construction of MOTHRA.

3 In this sense, program mutation is a kind of fault detection experiment, as might be carried out to
detect faults in digital circuits. Here, the experiments are applied to software and the fault model is the
space of likely errors that programmers make. The “local transformations” mentioned previously are
simply the fault insertion operations. This technique is general enough to simulate common coverage-
based tests such as statement, branch, and path coverage as well as many other systematic software tests.

E. Spafford
Georgia Tech
4 of 32

There are subsidiary issues that are addressed in the design of MOTHRA. Foremost
among these is our belief in capitalizing the software development effort at an appropriate
level. The notion of capital-intensive software engineering and production is not a new one.
For the MOTHRA development group, this point of view has led us to a fairly cavalier attitude
toward trading machine cycles for human effort in conducting a test. Provided only that it
can be justified economically, MOTHRA will spawn machine-intensive tasks and organize them
for execution by a computer resource of appropriate power. This function is called resource-
shifting and, although it is under the control of the tester, MOTHRA organizes and partitions all
test views to accommodate such remote processing.

2. User Views

Testers interact with MOTHRA through a view of the test. The tester’s view presents
images representing global test status as well as local objects, attributes and processes. There
may be several views to which the tester has access at any one time, but these views must be
accessed serially and the user cannot have two simultaneous and distinct views of tests.

Some of the objects in view are entirely local and private to the user. For example, the
user may create a temporary file as an aid in deriving appropriate test cases. These objects
are under the complete and total control of the current view, and the user who ““owns” the
view can create copy, share, and destroy these objects at will. At the other extreme are those
objects that are shared by all views. These objects are typically under the control of agents
or processes external to MOTHRA. An example of such a shared object is the source listing of
the software being tested. Such objects might be the property of configuration management
and library tools residing in a host environment. These tools enforce a specified set of rights
to access or modify the shared objects. MOTHRA operations on any shared objects in view
respect the rights inherited from the external owners or managers of these objects. Inter-
mediate to these private and shared objects are the public objects. Objects that are public
represent the visible activity of the test. These objects are generated by testers and by
MOTHRA tools. Public objects may include test cases and results, traceability mappings
between test events and specifications, and error/fault statistics. Some of these public objects
are transient while others are persistent. Occasionally, a transient object (e.g., test case
number 6) affects a persistent object (e.g, the error count for path number 26) and is incor-
porated into the MOTHRA object base according to predefined dependencies, relationships,
and operations in much the same fashion as source code files dependencies are treated by the
UNIX make utility.Feld79 The exact nature of these dependencies define a policy that is unique
to the test and its organization. MOTHRA does not define these policies—it only enforces
them.

In physical appearance, a view is bounded by the edges of a high-resolution bitmap
display. Each window in the view gives the tester access to certain objects and operations
that are currently meaningful. The tester selects windows, objects, and operations with a
mouse that can be used to point to windows and their contents and to pull down menu selec-
tions that are displayed under user control.

MOTHRA interfaces have been implemented for the Bell Labs Blit interactive bitmap
display terminal* running under the control of a UNIX window management executive called
Layers, and on Digital Equipment’s VAXstation II color and black-and-white display termi-
nals running under the X Window System.Sche86 These particular instances of the user inter-
face are, however, not the only ones possible. The underlying architecture effectively disas-
sociates the physical properties of the display from the tools which the display accesses. In
essence, the display is treated as just another tool in the environment. Other display tools
can be substituted provided that the environment’s interface conventions are satisfied.

4 The AT&T 5620 Dot-Mapped Display. See[Pike84], for example.

E. Spafford
Georgia Tech
5 of 32

2.1. Functions and Operations

We will begin by briefly describing a typical set of functions that the tester invokes.
These functions are generally invoked in a sequence of views, called a run. Runs may be
suspended (saving the complete view at the time of suspension) and resumed at any time.
However, atomic operations are non-interruptible. Therefore, the view that is actually asso-
ciated with a suspended run may contain objects resulting from values returned at a later time
by on-going atomic operations. These are managed by a data- and event-driven harness.
The same mechanism is used to manage multiple views of a test. A single display, for
instance, may be used to invoke a series of functions applied to two different source
modules. Since only one view at a time can be available, the tester can invoke a set of
atomic actions and suspend the run to begin a run for the second module.

2.1.1. Run Initiation

The key shared objects are the source files.5 A run is initiated by identifying a set of
source files and associating the name of the run with those files. MOTHRA handles the parsing
of the source files to a convenient internal form and also manages the naming conventions for
modules and other syntactic units contained in those files.

2.1.2. Test Level Selection

A test plan may specify any of several levels of testing to be performed.Budd81 Examples
of these levels are statement analysis, predicate and domain analysis, Whit’8 and coincidental
correctness analysis. Statement analysis is used for determining that every statement in the
program has been executed and has some effect on the functional behavior of the program.
Predicate and domain analysis are used to determine that all branches and specified paths are
properly selected and that domains associated with these predicates are properly defined.
Coincidental correctness analysis is used to test for the presence of a wide variety of compu-
tational errors, including various arithmetic, data flow, and interface errors.G00d79

Within each level, the user may also choose a strength of test, represented by a percen-
tage. The exact meaning of a strength value depends on the specific level of testing and cer-
tain subsets of the levels that may be selected. For example, if the user selects the statement
analysis level at 100%, the test can only be passed by constructing tests that fully exercise
every statement in the program. Within the predicate and domain analysis level at 90%
strength, the tester will be required to construct tests that with 90% certainty determine the
boundaries of predicate domains.

The levels of test are defined in terms of certain mutant operators.Budd78 That is, source
code transformations that implement the desired level of testing. For example, in the state-
ment analysis level, mutant operators called san and sdl are used to determine whether each
statement has been executed and to what effect. The san operator replaces each source state-
ment by a special statement called trap that raises an exception. Unless test cases are pro-
vided that raise all possible exceptions, all statements cannot have been exercised. On the
other hand, the operator sdl replaces each statement by a no-op. Unless the transformed
programs behave differently than the program being tested, the test data does not demon-
strate that the given statements have any functional effect on program behavior.

Within the levels, classes of these mutant operators may be selected by the tester. In
these cases, the tester will use the selected operators to implement specialized testing
strategies.AT¢79 These selections may be made on the basis of known or suspected
weaknesses, or perhaps upon economic considerations (e.g.,the tester may only have the
resources available to test 25% of the mutants in a specified time span).

5 MorHra is a multi-lingual environment. In the current version, MOTHRA is limited to processing
Fortran 77 (the complete language) and Ada (a large subset). Later versions are planned for C, Modula 2,
Lisp, and possibly others.

E. Spafford
Georgia Tech
6 of 32

Selection of levels, mutant types, and strengths may also be associated with source code
components. For example, during a unit test, the user may select only a certain subroutine
for a particular level and strength of testing. During software integration testing, the tester
may choose an incremental (i.e., bottom-up) strategy in which a given level and strength are

successively applied to units, then to integrating software that calls these subroutines, and so
on.

2.1.3. Test Data Selection and Execution

An important test function is the construction of tests and the execution of the program
on the test data. The creation of a set of test cases is essentially an editing function. The
editing may be under the control of the human tester, who is trying to meet some specified
level of testing (e.g., testing for the presence of all coincidental correctness errors of a given
type), an automated test data generator, a simulator, or even some data capture device that
records digitalized inputs from sensors, operators and communications channels. Creation of

appropriate tests is a key function. We will return to it again after some other supporting
functions have been described.

The actual testing is carried out by executing programs on the test data. The results are
observed by an oracle that decides whether or not the program has behaved properly. The
notion of proper behavior can be quite complex. In unit and module testing, the concept is
usually identified with functional correctness—that is, consistency with a written formal or
informal specification. In later views of a more highly integrated software system or subsys-
tem, correctness is less important than meeting functional or user requirements. The oracle
mediates all of these authorities. If a formal specification is available, the oracle consults it.
If a human user is the authority, the oracle takes advice from this source. If the behavior

cannot be assessed without additional instrumentation, the oracle receives instrumented out-
put and reacts accordingly.

If unacceptable behavior is observed, the policies in force for the test determine the
next course of action. In some cases, the test proceeds after the nature and location of the
error is recorded in a public record. In other cases, the cause of the failure is located and
fixed immediately, resulting in a new view of the test.

2.1.4. Test Status Evaluation

During the testing process, the tester eventually wants to know whether or not testing
has been completed. This determination may be subjectively made or it may be specified

quite precisely and unambiguously. The latter case is obviously the more interesting one in
MOTHRA.

Test status is instrumented and reported as dynamic progress toward meeting test goals
specified during run initiation. The user may be interested in overall progress toward com-
pleting a test specified for a given level and strength. By the same token, the user may be
interested in whether or not a test has been carried out to reveal a specific error or type of
error. In all of these cases, test status can be defined in terms of a single primitive function:
execution of a mutant program on the test data. If the test data—in the judgement of an
oracle—does not distinguish the program being tested from the mutant program, then the
mutant is said to be live and is reported as such. If, on the other hand, the oracle determines
that the mutant behavior varies significantly from the behavior of the original program, then
the mutant is marked dead.

Dynamic information on test progress can be displayed in graphical and tabular format
and is archived in public and shared objects according to test policies enforced by MOTHRA.

2.1.5. Test Data Creation Revisited

Test status evaluation is used to guide the test creation process. The tester may elect to
stop testing at this point or to strengthen the test data by attempting to kill some live mutants.
E. Spafford
Georgia Tech
7 of 32

If all currently enabled mutants have been killed, the tester may wish to create new mutant
types or begin testing a different subroutine.

In this process, the user is aided by the evaluation displays as well as by tools that may
be imported. Suppose, for example, that the tester is attempting to kill all mutants that
replace integer constants n with n+1 and n-1 (as might be required for domain analysis). In
addition to reporting that these mutants remain alive, MOTHRA allows the user to examine the
effects of these mutants in the context of the original program or even to browse through
related source lines or live mutants. More powerful test case editing capabilities are available
to create new tests, modify previous tests or to capture the results of other test data genera-
tors. If the user has an especially difficult time in constructing a test that kills these mutants,
he may import a debugger to attempt to exhibit that the mutants are in fact “buggy” versions
of the program.

2.2. The Display

The technology used in the display and the material presented in that display are critical
to the design of MOTHRA. The MOTHRA window layout presents the user with a view of all the
objects that were described above. Based on our classification of objects we have defined the
following subwindows (displays) within the MOTHRA display:

° Mutant Status Manipulation: The icons that define and reference specified mutant
types, aggregations of these types, and the levels and strengths of tests that can be
defined from them.

° View Status: The graphic symbols or textual displays that represent the progress of
the current view toward test objectives, or other measures of completion.

L] Test Cases: Any object—whether constructed by the tester or captured from an
external source such as a simulator—that is used to stimulate the software being
tested.

e Source Language Representations: Each view of the test defines a fragment of the
software being tested, and a source language representation of such a fragment is a
high-level description of the fragment. By definition, the most primitive constructs
in any source language representation are the source lines of code; all other
representations associate text or graphical information with sets of source lines.

L Command Line: Terse communications, prompts and system status reports are
directed to a degenerate (one line) window called the command line.

Testers may query and modify attributes displayed in any of these subwindows. Tran-
sient information and data are displayed by whatever means is most appropriate for the
display tool. In our implementation, such transient data are displayed in windows that over-
lay (and may sometimes obscure) the fixed windows just described. An example of a tran-
sient object might be one of the thematic tools mentioned in Section 1. The tester must make
any explicit interfaces and functional dependencies between transient objects and MOTHRA
objects since none are implicit in our design of MOTHRA.

The MOTHRA Display handles “global” information in two distinct ways. First, it gives
the tester access to objects not in the current view. For example, to initiate the testing ses-
sion, the tester provided file names that were meaningful to the host’s file system, even
though MOTHRA does not contain file management capabilities. Second, simply touching and
changing the attributes of objects in the Display can have affects on the other windows in the
view—thus the Display encapsulates a set of “global” relationships for the rest of the view.
For example, selecting a random sampling of substitution mutants results in a propagation of
mutant status information to the other subwindows, such as the View Status subwindow.

Attributes of objects displayed in each window can be modified dynamically, so that,
for instance, the display format of the source language text can be changed to bring the live

mutants into view. More complex interactions between view and source Fjvindows are
. Spafford

Georgia Tech
8 of 32

possible. For example, the tester can point to a histogram “bar” in the view window and
cause the corresponding live mutants to appear in the source window.

3. Subenvironment Architecture

Supporting the user display is a collection of tools bound together by an information
interface and hosted on another environment. Specified access pathways and ports allow
information, commands, and signals to flow between MOTHRA and the host environment.
While most of these have operating system dependencies, they have been hidden in higher
level constructs that appear to be primitives to MOTHRA. Although the overall design is
robust, implementing these primitives is easier in some environments than in others.

For example, one of the reasons for conceiving MOTHRA as a subenvironment of a host
is the need to control and manipulate faulty processes. Unlike most programming environ-
ments, the intent of MOTHRA is to execute faulty processes. While most software developers
would like to consider failure to be an abnormal condition, the MOTHRA user deliberately
seeks it out through the process of killing mutant programs. Many of the failures induced in
this way are benign (the mutant program runs to completion but delivers incorrect results).
Approximately one fourth of the mutants generated,® however, are not benign. They gen-
erate processes that run seriously amok and must be tightly controlled. The modes of failure
in these processes run from simple errors such as division by zero to storage allocation and
concurrency errors that could harm unrelated processes if allowed to proceed unconstrained.

An important aspect of these definitions is that the system defines a process at each time
n, rather than just a state. This is a key idea for several reasons. First, the atomicity of
actions may result in several intermediate states before any other MOTHRA function can be
applied. Second, the display architecture and logical driver together constitute a data and
event driven network of autonomous processes and unique definitions of sequences of states
may not be possible in certain circumstances, whereas definitions of sequences of processes
can be defined in terms of the external actions needed to invoke them. Third, error recovery
and roll-back procedures as well as look-ahead optimization are easier to define and imple-
ment. Fourth, we anticipate the use of MOTHRA in conjunction with nondeterministic system
testing procedures; recording and replaying test scenarios and associating internal test events
with software inputs is relatively easy to implement if each major time step of the environ-
ment corresponds to a history of states.

The information interface is the MOTHRA backplane. In many respects, MOTHRA com-
bines the features of both open and closed programming systems. MOTHRA is closed in that
the fixed windows of a view and the objects, attributes and operations associated with them
define an Entity-Relationship (E-R) modelChen80 that cannot be modified. Thus the process
monitors, test data generators, instrumentation and other tools associated with the fixed win-
dows can always count on certain dependencies and relationships among essential objects in
view—ensuring, for instance, reproducible behaviors.

On the other hand, MOTHRA is open to the extent that any E-R model-respecting tool
whatsoever can be attached to the backplane. Editing is a simple example of a transient
activity that can be imported in this way. Any file can be edited by any editor provided only:

e the file is editable by the editor in question;

] the point in time at which the editor is invoked does not preempt or interrupt an
action defined to be atomic in the E-R model;

° no attributes or properties are introduced by the editor’s actions or side effects that
contradict attributes or properties of the E-R model.

In other words, any tool can be imported to the user’s view, provided that the user is
able to plug (or wire) that tool into the backplane. This is a particularly valuable design for a

6 In our testing so far.

E. Spafford
Georgia Tech
9 of 32

testing environment, since many testing tools share common tool fragments. It also permits
some novel interactions between the host and MOTHRA environments. A software developer,
for example, can attach a mutant generation and execution capability as a background activity
during coding and debugging. This is a generalization of Weinberger’s dynamic instruction
counting tool.Wein84 The underlying E-R model allows the processes of mutant generation
and execution to be decoupled from the integrating framework provided by the display archi-
tecture (recall that the display technology is simply another tool that plugs into the back-
plane). One application of this capability is the inexpensive maintenance of test status
throughout the development process by keeping killed mutant status information for object
code.

4. Resource Shifting

The process of creating and executing mutant programs on the test cases 7, 7,,...,T, can
be done serially in one of two logical orderings. The first ordering would be to apply the test
cases, one at a time, to each live mutant and observe the results. The second ordering is
where all test cases are applied to each live mutant and the results observed. All such serial
processes consist of on the order of uXk independent transactions, where p is the number of
enabled mutants and k is the number of tests to be executed.” In either case, we are
presented with a series of independent tasks.

Simply spawning these independent tasks to m independent parallel processors reduces
the elapsed time for processing the test cases against the mutants to:

pXk

+ OVERHEAD.

Since the OVERHEAD can be compressed to one of the serial protocols mentioned above, this
amounts to a linear speed up on independent parallel processors. However, large blocks of
these tasks have an internal structure that can be exploited to achieve more impressive speed
gains.

For example, the substitution mutants of a simple assignment (using C-like notation)
can be written in one of the following forms:

*lhs = operand, X operand, => *lhs’ = operand, X operand, Q)
*lhs = operand, X operand, => *lhs = operand’, X operand,)
*lhs = operand, X operand, => *lhs = operand, X operand’, 3)

Furthermore, the order in which these mutants appear is fixed once the program is known.
At the time mutgen returns a value, the mutant statements (1)-(3) are equivalent to a vector
operation

LHS = OPERAND, ® OPERAND,,

where ® is the vectorized binary operation and the vectors LHS[i], OPERAND [i], and
OPERAND,[i] are defined respectively to be *lhs, operand,, and operand,[i] if i = 0. For
i = 1, the vector positions are defined by the mutant definitions (1)-(3). Thus, the substitu-
tion mutant executions are equivalent to a series of vector operations (followed by inner pro-
duct operations to determine which mutants have been killed).

Interleaving the generation of vectorized expressions with parallel tasks can result in a
multiplicative speed-up. This is especially attractive for the case of substitution mutants since
for a typical n line program, the (worst-case) number of substitution mutants grows

7 Some simplification is possible by *short-circuiting” an iteration once a mutant has been killed .(thex:e
is no need to apply further test cases to a dead mutant), but we will ignore that and other optimizations in
the following presentation so as to make it more accessible.

E. Spafford
Georgia Tech
10 of 32

proportional to

()
2

which is the dominant term in the expression denoting the worst-case complexity of mutant

gePeration axgd execution. For moderately sized software systems (e.g., systems for which

10 = n =10) complete tests have required several days of dedicated computer time. With

interleaved parallel tasking and vectorization on processors with MIPS rates in the 50-100

range, a thousand-fold speed-up is possible, bringing these tasks to within the reach of real-
time responses.

This has led us to consider seriously the possibility of shifting resources to accommodate
such processor intensive tasks. MOTHRA is designed to be hosted on hardware configured with
multiple machines of varying capabilities.

For example, one host might consist of the bitmap displays, object definitions, and file
services required for tester interaction. We assume also that whatever programming environ-
ment serves as the host environment for MOTHRA can be accessed through this host. In partic-
ular, editing and other transient functions do not make any demands on subsequent layers.

A second host consists of large-to-medium granularity parallel processors. Each of
these processors operates on a common memory with appropriate programmer control of
parallelism. The tester may—when local resource thresholds are exceeded— shift gears. The
result is the spawning of blocks of independent parallel tasks for each of the processors.
Coordination of destination processors and the collection and collation of the results of pro-
cess execution is the responsibility of a process that resides on the first host. It is intended
that the tester have complete control over the allocation of parallel resources. At present,

however, this control is restricted to partitioning the serial tasks mentioned above in some
appropriate manner.

In the same manner, vectorization is carried out as described above and the vectorized
code and test cases are sent to a third host. Since the result of the vector operation is itself a
vector, only this result is returned from this host. The precise format of vector operations is
a machine-dependency that cannot be easily removed, although we anticipate that UNIX sys-
tems capable of 100-500 scalar MIPS with powerful vector extensions to C will become
widely available. For the current version of MOTHRA, however, we are adopting a conserva-
tive approach. For example, long chains of data dependencies within loops are being parti-
tioned to avoid vectorization difficulties.

The experimental performance studies of resource-shifting will be reported in detail
elsewhere.

5. Conclusion

The MOTHRA environment described in this paper is currently implemented and running
in a multi-host environment consisting of Digital Equipment VAX 11/780 and 11/750 mini-
computers, VAXstation II workstations, AT&T Blit bitmap display terminals and a Control
Data Cyber 205 supercomputer. Version 1.0 of MOTHRA contains at least primitive imple-
mentations for the functions described above, although many of the most desirable integrat-
ing features (e.g., automating the transmission of vectorized processes from the VAX host to
the Cyber 205) are not fully functional. Thus far, MOTHRA has been used to test Fortran 77
programs in the 20-500 line range. With current memory and other constraints (there are no
MOTHRA design constraints) complete testing of 1,000-10,000 line Fortran programs seems
well within the capabilities of Version 1.0.

A second version that exploits optimization opportunities and will be tailored to
extremely large-scale applications is under design.

Although user experience with MOTHRA is currently confined to our development group,
we expect Version 1.0 to be available on a limited scale to a community of 30-50 software
E. Spafford
Georgia Tech
11 of 32

testers. In spite of the care we have taken to ensure that fundamental design concepts really
match the needs of realistic software testing, we anticipate that many hitherto unidentified
issues will surface. These experiences will be analyzed and reported at a later date. We are
optimistic, however, that a software testing environment architected as described above will
deliver acceptable levels of computing resources to the important problem of how to test and
evaluate the quality and reliability of large software systems. Furthermore, we anticipate
that the system will be easily learned and easily used, thus leading to improvements in testing
and software production.

' References

Acre79.
Acree, A. T., R. A. DeMillo, T. A. Budd, R. J. Lipton, and F. G. Sayward, ‘“Mutation
Analysis,” TECHNICAL REPORT GIT-ICsS-79/08, School of Information and Computer
Science, Georgia Institute of Technology, Atlanta, GA, 1979.

Alic83.
Allchin, J. E., “An Architecture for Reliable Decentralized Systems,”” PH.D. DIsS.,
School of Information and Computer Science, Georgia Institute of Technology, Atlanta,
GA, 1983. Also released as technical report GIT-1CS-83/23

Budd78.
Budd, T. A., R. A. DeMillo, R. J. Lipton, and F. G. Sayward, “The Design of a Pro-
totype Mutation System For Program Testing,” PROCEEDINGS NCC, AFIPS CONFERENCE
RECORD, pp. 623-627, 1978.

Budd81.
Budd, T. A., “Mutation Analysis: Ideas, Examples, Problems, and Prospects,’’ in Com-
puter Program Testing, ed. B. Chandrasekaran and S. Radicchi, pp. 129-148, North-
Holland, 1981.

Chen80.
Chen, P. P., Entity-Relationship Approach to Systems Analysis and Design, North-
Holland, 1980.

DeMi78.
DeMillo, R. A., R. J. Lipton, and F. G. Sayward, ‘“Hints on test data selection: Help
for the practicing programmer,” COMPUTER, vol. 11, no. 4, pp. 34-43, 1IEEE, April
1978.

DeMi86.
DeMillo, R. A., “Functional Capabilities of a Test and Evaluation Subenvironment in
an Advanced Software Engineering Environment,” TECHNICAL REPORT GIT-SERC-
86/07, Software Engineering Research Center, Georgia Institute of Technology,
Atlanta, GA, 1986.

Feld79.
Feldman, S. I., “Make—A Program for Maintaining Computer Programs,’’ SOFTWARE
PRACTICE AND EXPERIENCE, vol. 9, pp. 255-265, 1979.

Good79.
Goodenough, J. B., and S. L. Gerhart, “Towards A Theory of Test Data Selection,”
TRANSACTIONS ON SOFTWARE ENGINEERING, vol. SE-1, no. 2, pp. 156-173, IEEE, June
1979.

Howd82.
Howden, W. E., “Weak Mutation Testing,”” TRANSACTIONS ON SOFTWARF. ENGINEERING,
vol. SE-8, no. 4, pp. 371-379, IEEE, July 1982.

E. Spafford
Georgia Tech
12 of 32

Pike84.
Pike, R., “The Blit: A Multiplexed Graphics Terminal,” BELL LABORATORIES TECHNICAL
JOURNAL, vol. 63, no. 8, pp. 1607-1630, AT&T, October 1984.

Sche86.
Scheifler, R. W., and J. Gettys, “The X Window System,” TRANSACTIONS ON GRAPHICS,
no. 63, ACM, 1986.

Weing4.
Weinberger, P. J., “Cheap Dynamic Instruction Counting,”” BELL LABORATORIES TECHNI-
CAL JOURNAL, vol. 63, no. 8, pp. 1815-1826, AT&T, October 1984.

Whit78.
White, L. J., E. I. Cohen, and B. Chandrasekaran, “A Domain Strategy for Computer

Program Testing,” TECHINCAL REPORT OSU-CISRC-TR-78-4, Ohio State University,
1978.

E. Spafford
Georgia Tech
13 of 32

THE VIEWGRAPH MATERIALS
FOR THE

E. SPAFFORD PRESENTATION FOLLOW

E. Spafford
Georgia Tech
14 of 32

2eE0¢ DPibiosg ‘DIUD|Y
Abojouyos| jo a1ninsu| pibios9
Jojue) yoipessy buliosulbul 24DM)J0OSG

INIANOHIANT ONILSIL FHIVMLI40S VHHIOW 3HL

. N N N N B EH B E E B B B B B B B B B |

E. Spafford
Georgia Tech
15 of 32

J4N7ivd 40
S3SNVO JISNI¥LNI JAON3Y ANV (NI *

J4N7v4 40 S3AON JLVHISNOWIA *

J3AN3LNI SV S3AVH3SE
W3LSAS 1VHL 3JON3AIINOD 3ISVIUONI *

ALIALLOY ONIONAIY—MXSIY ¥V SI ONILSIL

SS300dd IN3NdOT3A3A 3HL NO TTOHLINOD V S| ONILS3L

E. Spafford
Georgia Tech
16 of 32

== ONILSHL

<} LNANdOTHANA — M.

SNOILV133dX3

$

SWILSAS

T1d0M

31d03d

SAVY OINSOD

§S30084d ININJO13A30 FHL 40 148Vd LON SI ONILS3I
ONDIVIHS ATLOILS

N N N EE EHE R E E K N F I B B BN N B

COSTS

COSTS DUE TO TESTING

COST OF ERRORS

E. Spafford
Georgia Tech
17 of 32

|
- - -
‘ ;Y

S3SVHd J10A33411

NOILVY3dO JIVYOILINI ONIJO0D N9OIS3d 034S/03Y = 5
Sa®
S, 80 %
v = 0O
-~ N ' moo
MmO~
- ¥
49
48
-1 01
- ¢l
7 ¥l
9l

1S00 3AILVI3Y

10D N9ISZa 100 13y
NOILOFHH0D d0d&3 40

LSO SANLVIZE

19 of 32

S1J3LE0 JFTHULNIFXI 20 SNOTIENMOLSNISNL T30 3¥Y SNOILEY3H0 JIWOLY
SINIHMISNOD 3ZIS I¥0Id¥d U ON

E. Spafford
Georgia Tech

O3INITN0-193080 ‘NOISSININOD HIET ‘NOILUWING ‘ONIMOONIM ‘SOIHJUD
SIDYAYIINI HIAIMONZE HIIH

S3HIHL *SUOHLIW ‘ST00L 'SIOUAIILNI NOWHOD

20T HI < 207 ear
H3LSAS LINN
- Y
= S

INIWNOMIANT ONILSTL FUMLA0S HAHIOW dHL

E. Spafford
Georgia Tech
20 of 32

H
HS %

—

1dATTT JIHINHOMddH N
)

g 1ld 1571 4
INIZIIHIIJHD ——- S54HFD ONILAT

ofHH0 ONII

SNOILJHYFINI 5[]
04 ADOTIOUOHIFW H —= 577001 DILHWAHL %

S1531 H9H7]
INIIJENHW 40 ABM H —-- SMIIA %

dedHLOW 40 S123dSH 338HL

NS s aseSygpEEE TS E T EEEE®S

' = = ' \

VMHION 404 SZIVIS TNLONINVZA UNZLSISNOD SNILZd M3

E. Spafford
Georgia Tech

O M3IA 8 M3 V M3 -
o}
S103rg0 BTN N 5
INFISNVIL \ g n_/ o L (® ° o .
SL03rg0 \
o o
VAN ° / °
,/./

S103rg0 orignd

S103r80 d54VHS

IX3INOD 1S31 TvE0T19 3JHON V
OLNI MOGNIM V 3NIJ30 AVIdId dVNLIE 40 S3RIVANNOSE

S1S31 394V 40 SM3IA

E. Spafford
Georgia Tech
22 of 32

J1OVHO FHL +
JOSINGY LS3TL ~*

S$3808d JONVA3IdNWI—03Z +
S&YF09Ng3d OrOENAS IMIN—Id +

NOILYININAMISN] *

S3N3FHL 100L NOWWOD

3Z1S 03SY3UONI
ALIT30I4 O3SY3¥ONI -5
1500 03SH3uONI m =
SAIN @B2—=— dIW I ©§°
MmO
INIWNOYIAN3 1SOH G3LngIy¥1SIA ONE S193[80
\\-
88L/11 Xd
Xah 1178 1%l8
IN3ND3ES

582 AIEAD
O3ZITHLIdYED SI LINJWNOJIANI 3HL FONO

ASH3 SI S¥Y3ID ONILAIHS

30MN0SIY 40 LSO
1S3l 40 1S0D
TVINIWIHONI

00S < (00°L ‘(o0 ‘Ipd ‘Ipsy ‘4 ‘{08 XVA})D
20t = (00°L ‘{190 ‘Ipd ‘Ips} ‘d ‘{G0Z M3IGAD ‘08L XVA})D

E. Spafford
Georgia Tech
24 of 32

(@3zrvy¥3NI9 39 0L LON)
SLINS3Y TYINININIIXT 40 L3S 1S4

xzomoz-zzauObmoo ul aw«
¥ No S FISNGHIS ONv 1 BAST Iv 3 NIST 0 IS5 = (S 1'd'¥)0

1S3l 40 1SO0O VIN3NI3HONI

- - 3

(smopuim—x) Il UonDISXVA NO XidLIn #
(ilg uo sisAD7) 08L/1L XVA NO 0S8 &% *

E. Spafford
Georgia Tech
25 of 32

AN3NANOYIANI LSOH

|
Nﬁ S700L ‘S3svavivad ‘S3l4

$3SS53004d ‘SILNEIMNLLY ‘SLO3rdo

7T

JOVANIINI ¥3sSn VIHLONW

ININNOYIANIENS V
39 OL Q3N9IS3a SI VYHLONW

TECHNIQUE

Given: program P
test data T

Construct: a set of MUTANT
programs M(P)

M(P,T) = % of programs in M(P)

(1) not equivalent to P

(2) give different results on T

E. Spafford
Georgia Tech
26 of 32

E. Spafford
Georgia Tech
27 of 32

NETENENEIY /Y VIVa 1S3L

SOLVLNN V _ (1 ¥3ISyvd —— Wr¥90dd

NALSAS NOILVLAN DILVNOLNY

B N N B N B N B 2 B B B BN N N N N N

Class: [Cary [con [é%f'][:fdmn 1 opm |

pra][sel [=t

sll]

MOTHRA

Fortron-7? Mutation System

Software Engineering Research Center
Georgia Institute of Technology
Atlonta. GA 30332

E. Spafford
Georgia Tech
28 of 32

cpm

JL_prd 1

10¢
2006

R

g

TNIECER ACLOILN®

NG 200 J=1,N-j
DO 100 J=i,N-J
IF (n(I).LE.ATJ) Y COTU 0@
TEMP=N(I2
AlI)=N(J}
A(J)I=TEHF
CONTINUE
UONTINUE
RETURN

ENB H Director
dit

bouree .

i Displany CodeFile

splay Symbol Tab e

i
i

SUBROUTINE SELECT(L.N3

INTEGER L(N),N
ANTECER I.,J,HMAX,TENP

JeN
[F (J.LT.23 COTO 99
HAX=d
Tal-1
IF (LT 1) 6070 2¢
IF ;L;I)-LE-LiﬂﬂX)J COTQ 14
MNXa

ICMPP=LEMNX:
LnX) =L
PSRN oY
Jaj-1
L0704

RETURN
SN

SUBROUTINE INSERT (LN
XINTEGER L(NJ),N

INTECER KEY.I.J

J=z,

IF (J.GT.N) GOTU 9%
KEY=L(J)

LmJ-3

15 32

iHutont Profilesi
!SPQC|fy Huteants
£ x| eriment State

[for L2
{

Enter & volues for the
array L: 0 =%

Enter value for N: 2

¥ .
2 Test Case uS

Running Uriginal Progrom

Input Values for test case 5.
Lo~
N 2

Execution stopped because:

Normal Termination.
There were 22 statements
executed.

Directory

Output VaIJ§eloct Test C'vfj

E. Spafford
Georgia Tech
29 of 32

T B O OB E BN B E B BEEEEREEBEE B O

P ————
3 ® e & o o
i qe - d I N
d |° 4 .cm......
s = R
; °
. e o & ¢ o
Rl k N R
B oo cee m
» L PR e o ofie it .
; e ceoe..8 ...
_r Y N e o o . o ® o e o o
i 58 : e o o oo . oow'oo
2 g e e .m.m IR IR SRR
: RN I I I R MO N - R
| | : A [P oo feet B e
: - S0 O LN
ﬂ [c e s e e . los n...wmmnmw,.u‘mhm B L B
i w —
¢ e e e eo e .. RS BEEXNSSOYL.I...
W e b e e i e e e e e QB Brirememmret=—e g O o8 e TTIIISTTT
1; ! oWr vccccoccOLoO
R B0 e e e e e e 0 e e e e e o BlalataYd o 1 SVSTV ST Y of e o ofe o ¢ o o o @
1T 11 e e s iy e, |, R P
n ; 5505050 :
-§ 1 B 0 e e ® e e e Pt gt et ot g b b gl gl * ® & © ®» o o o o o ofle o & o = s o
g A sfoananaannaanas | .. s
H : & ... oO@aann00e000 L P
HE : 5 g [N - X - & T S
| | : »m I P R o
L - —l 4 neu Mm NM“W ------------------
- M : S =3 s e e e s = WNCr¢ Of ® * © o o 0 ¢ 2 0 o oo
. ; - nN-—an
~ﬁld oV Py
| ; ; e ce
:lp 4 5
=1 o : 8 <o
cn 5 A)
3 HIL 5
s g Lad W
g : 3 °c_o
i1™ 1o H A * 8T
A < o=
. be -~
H1 ¢l 24 87
i 8E3 1= HNESAG
YL HE Z98dle| =s-Jisaasasrccot, s
i o xza—xc| f3==lgnalda xNe
| L |© - “sactdgl o5¢ X322 whine
M H = HWLHc —_O
wﬁ. < 28w |3] e~
f.l. ei.-x [Nvl.iﬂnul\...\ ..ov.u-- -----
HICI A Iy 7 o0 OIW .m O ° iy
HICIRH W NO o3 o . .m....uwu(. 4~
L z 0 OEW ee B 2z ..FW..F
: I~ & e e N, R, DI, L L.
H - C et e e s e
9 M e e 6 e s s e 6 e s s e . a .
“nv-?. wm A
: 6 o tie e e e s s e s e e
- W -— N - (%]
NPT T e p roy = P R Ty 7w

E. Spafford
Georgia Tech
30 of 32

E. Spafford
Georgia Tech
31 of 32

SNOILVYLISNOWNIA ALIIGISYd4 LONANOO *
HOY 01 3dA1010dd LdBdy *

NOILVININIIdNI ¥ILNdWODH3IdNS &04 "Iv3dl
dn S31voS

SNOLLVAITYA TVANINIYIdXT FAISNILX3
SISV WOIL3¥03HL d3dO13A3A—TI3M
JAILVLIINYNQ ANV OILVAWILSAS

ONILSTL OL HOVOYddY NOLLV.LNIN
WVH908d NO J3SVE FdALOLOYd dIiNg *

© O ©0 O O

HOVOdddV TTVOINHO3L

SNOLLVINIWITdNI ¥3LNdNOD ¥3dNS o
NOLLVZIAILAO | NOISH3A o

JALVILIND SFIANLS FONYWHOAYTL *

E. Spafford
Georgia Tech
32 of 32

d314I03dS JYNLOILIHOYY o
03NIJ30 SHOLVH3dO ¥O¥¥3 o

JINOISTT ALTTEVdVDO VAV *

(suonDISXVA) SMOANIM—X aNV (08Z/11 XVA) SM3IAV] o
JOVNONY1 £L NVHLIY¥O4 3IITdNOD SISSID0Nd o

Jd41S41 9NIFg dNV JdFTIVISNI
[NOISHYIN 40 SNOILVININT TN OML *

SNLVLS 103royd

A Value-Chain Analysis of Software Productivity Components

Barry W. Boehm, TRW Inc.
Phillip N. Papaccio, TRW Inc.

Summary

This paper summarizes a recent value-chain analysis of software productivity
components at TRW. It explains the various value chain components and per-
centages, assesses their implications for improving software productivity, and
elaborates on some further data analysis performed to address one of the major
value chain components: rework costs.

1. The Software Product Value Chain

The value chain, developed by Porter and his associates at the Harvard Busi-
ness School [Porter, 1980; Porter, 1985, is a useful method of understanding
and controlling the costs involved in a wide variety of organizational enter-
prises. It identifies a canonical set of cost sources or value activities, represent-

‘ing the basic activities an organization can choose from to create added value

for its products. Figure 1 shows a value chain for software development
representative of experience at TRW. Definitions and explanations of the com-
ponent value activities are given below. These are divided into what [Porter,
1985 calls primary activities (inbound logistics, outbound logistics, marketing
and sales, service, and operations) and support activities (infrastructure, human
resource management, technology development, and procurement).

Primary Activities

Inbound logistics covers activities associated with receiving, storing, and dissem-
inating inputs to the products. This can be quite large for a manufacturer of,
say, automobiles; for software it consumes less than 1% of the development

outlay. (For software, the related support activity of procurement is also
included here).

Outbound logistics covers activities concerned with collecting, storing, and physi-
cally distributing the product to buyers. Again, for software, this consumes less
than 1% of the total.

B. Boehm
TRW
1 of 18

Figure 1. Software Development Value Chain

INFRASTRUCTURE

HUMAN RESOURCE MANAGEMENT 3\
TECHNOLOGY DEVELOPMENT 3(8)
7
MANAGEMENT !
A N QA. CM b
R |B T
xk |O 30
[
€ |V 1!
T N 1 REWORK o
v |o 4 31 g SERVICE
N '
e |4] 5| D
1
s |6 10 8, ;
!
3 s 8 G
A 1 RQTS 13]
M.
Lt Treon | DEvaneo 715
: c DESIGN CODE AND '
s UNIT TEST INTEGRATION |C
AND TESTY S
B. Boehm
TRW
2 of 18

2-03>» 2%

Marketing and sales covers activities associated with providing a means by
which buyers can purchase the product and inducing them to do so. A 5%
figure is typical of government contract software organizations. Software pro-
duct houses would typically have a higher figure; internal applications-
programming shops would typically have a lower figure.

Service covers activities associated with providing service to enhance or main-
tain the value of the product. For software, this comprises the activities gen-
erally called software maintenance or evolution. For simplicity, Figure 1 avoids
including a service cost component in the development value chain; a life-cycle
value chain is presented and discussed as Figure 2 below.

Operations covers activities associated with transforming inputs into the final
product form. For software, operations typically involves roughly four-fifths of
the total development outlay.

In such a case, the value-chain analysis involves breaking up a large component
into constituent activities. Figure 1 shows such a breakup into management
(77), quality assurance and configuration management (5%), and the distribu-
tion of technical effort among the various development phases. This phase
breakdown also covers the cost sources due to rework. Thus, for, example, of
the 20% overall cost of the technical effort during the integration and test
phase, 13% is devoted to activities required to rework deficiencies in or reorien-
tations of the requirements, design, code, or documentation; the other 7%
represents the amount of effort required to run tests, perform integration func-
tions, and complete documentation even if no problems were detected in the
process.

Support Activities

Infrastructure covers such activities as the organization’s general management
planning, finance, accounting, legal, and government affairs. The 8% figure is
typical of most organizations.

Human resource management covers activities involved in recruiting, hiring,
training, development, and compensation of all types of personnel. Given the
labor-intensive and technology-intensive nature of software development, the
3% figure indicated here is a less-than-optimal investment.

Technology development covers activities devoted to creating or tailoring new
technology to improve the organizations products or processes. The 3% invest-
ment figure here is higher than many software organizations, but still less than

B. Boehm
TRW
3 of 18

Figure 2. Software Life-Cycle Value Chain

- |
DEVELOPMENT
REWORK
SERVICE
: ("’"MAINTENANCE") :
n
(]
i
N
oo | ca | WY
Ut
B. Boehm
TRW
4 of 18

optimal as an investment to improve software productivity and quality.

Margin and Service

Margin in the value chain is the difference between the value of the resulting
product and the collective cost of performing the value activities. As this
difference varies widely among software products, it is not quantitatively
defined in Figure 1. As discussed above, service is best quantified as a software
life-cycle value chain as shown as Figure 2, with roughly 70% of the value
activity devoted to service or evolution-related activity. However, since the
component activities involved during evolution do not differ markedly from
those which go on during software development, we will continue to focus on
Figure 1 as a source of insights into understanding and controlling software
costs.

Software Development Value Chain Implications

The primary implication of the software development value chain is that the
“Operations” component is the key to significant improvements. Not only is it
the major source of software costs, but also most of the remaining components
such as “Human Resources’ will scale down in a manner proportional to the
scaling down of Operations cost.

Another major characteristic of the value chain is that virtually all of the com-
ponents are still highly labor-intensive. Thus, there are significant opportunities
in providing automated aids to make these activities more efficient and capital-
intensive. Further, it implies that human-resource and management activities
have much higher leverage than their 3% and 7% investment levels indicate.

The breakdown of the Operations component indicates that the leading stra-
tegies for cost savings in software development involve:

® Making individual steps more efficient, via such capabilities as
automated aids to software requirements analysis or testing.

e Eliminating steps, via such capabilities as automatic programming or
automatic quality assurance.

® Eliminating rework, via early error detection, or via such capabilities
as rapid prototyping to avoid later requirements rework.

B. Boehm
TRW
5 of 18

In addition, further major cost savings can be achieved by reducing the total
number of elementary Operations steps, by developing products requiring the
creation of fewer lines of code. This has the effect of reducing the overall size
of the Value Chain itself. This source of savings breaks down into two primary
options:

e Building simpler products, via more insightful front-end activities such
as prototyping or risk management.

e Reusing software components, via such capabilities as fourth-
generation languages or component libraries.

2. The Software Productivity Improvement Opportunity Tree

This breakdown of the major sources of software cost savings leads to the
Software Productivity Improvement Opportunity Tree shown in Figure 3. This
hierarchical breakdown helps us to understand how to fit the various attractive
productivity options into an overall integrated software productivity improve-
ment strategy.

Further discussions of the various productivity options are provided in [Boehm,
1986a]. As one example involving further data analysis, we studied the distribu-
tion of rework costs on a sample of 1378 problem reports on two large TRW
software projects. These studies indicated that rework instances tend to follow
a Pareto distribution: 80% of the rework costs typically result from 20% of the
problems. Figure 4 shows some typical distributions of this nature from recent
TRW software projects; similar trends have been indicated in [Rubey et al,
1975|,[Formica, 1978], and [Basili-Weiss, 1981]. The major implication of this
distribution is that software verification and validation activities should focus
on identifying and eliminating the specific high-risk problems to be encountered
by a software project, rather than spreading their available early-problem-
elimination effort uniformly across trivial and severe problems. Even more
strongly, this implies that a risk-driven approach to the software life-cycle such
as the spiral model [Boehm, 1986] is preferable to a more document-driven
model such as the traditional waterfall model.

B. Boehm
TRW
6 of 18

Figure 3. Productivity Improvement Opportunity Tree

INCENTIVES, STAFFING, TRAINING

IMPROVE
PRODUCTIVITY

MAKE —
PEOPLE MORE |—— FACILITIES
EFFECTIVE }— MANAGEMENT
WAKE STEPS | —— SOFTWARE TOOLS, ENVIRONMENTS
MORE - WORKSTATIONS
EFFICIENT |—— OFFICE AUTOMATION
}1— AUTOMATED DOCUMENTATION, QUALITY ASSURANCE
ELIMINATE
STEPS | AUTOMATED PROGRAMMING
}— XKNOWLEDGE-BASED SOFTWARE ASSISTANT
}— INFORMATION HIDING, MODERN PROGRAMMING PRACTICES
ELIMINATE
REWORK SOFTWARE COMPUTER AIDED DESIGN
L FRONT-END LANGUAGES
—— INCREMENTAL DEVELOPMENT
U RAPID PROTOTYPING
SIMPLER I
PRODUCTS] PROCESS MODELS
| — COMPONENT LIBRARIES
REUSE ‘
COMPONENTS | APPLICATION GENERATORS

—— FOURTH-GENERATION LANGUAGES

B. Boehm
TRW
7 of 18

% OF
COST
T0
FiX
S$PR’'s

Figure 4. Rework Costs are Concentrated in a Few High-Risk Items

TRW PROJECT B —

_ (1005 ssy

oS

TRW PROJECT A

6o (373 SPR's)
40
20
() i | 4 1 B | 1 1 1 1 1 J
o 10 20 30 40 60 60 70 80 90 100

% OF SPR’s (SOFTWARE PROBLEM REPORTS)

B. Boehm
TRW
8 of 18

[Basili-Weiss, 1981]. V. R. BASILI and D. M. WEISS, “Evaluation of a
Software Requirements Document by Means of Change Data”, Proceedings,
Fifth International Conference on Software Engineering, IEEE, March 1981,
pp. 314-323.

{Boehm, 1986]. B. W. BOEHM, “A Spiral Model of Software Development
and Enhancement”, Proceedings, IEEE Second Software Process Workshop,
ACM Software Engineering Notes, March 1986.

[Boehm, 1986a]. B. W. BOEHM, “Understanding and Controlling Software
Costs”, Proceedings, IFIP 86, North Holland, 1986.

[Formica, 1978]. G. FORMICA, “Software Management by the European
Space Agency: Lessons Learned and Future Plans”, Proceedings, Third
International Software Management Conference, AIAA/RAeS, London,
October 1978, pp. 15-35.

[Porter, 1980]. M. E. PORTER, Competitive Strategy: Techniques for
Analyzing Industries and Competitors, New York: The Free Press, 1980.

[Porter, 1985]. M. E. PORTER, Competitive Advantage, New York: The
Free Press, 1985.

[Rubey et al, 1975]. R. J. RUBEY, J. A. DANA, and P. W. BICHE, “Quan-
titative Aspects of Software Validation”, IEEE Trans. Software Engineer-
sng, June 1975, pp. 150-155.

B. Boehm
TRW
9 of 18

B. Boehm

TRW
10 of 18

SSAD0Ud AYVMLAOS FHL 40 THAOW TVHIdS dHL e
SNOILVOI'TdWI INFWADVNVI JSId e

SNOLLVOITdWI WVYD0Ud dVAT WNINVNO MIL e
43491 ALINNLIOddO ALIAILDONAOYd FYVMIJOS e
SISATVNV NIVHD dANTVA JdVMLI4AO0S e
MYL ‘0100VdVd TIHd
WHAO04 Addvd

SINANOdWOD ALIALLDNAOYd FIVMILAOS A0 SISATVNV NIVHD dNTVA V

2<CxcO0~-2

(9%08) ANIWJOTIAIA

IOAH3S

1831 GONY

NOILVHOILNI 1S31 LINO

ANV 33000 N9OIS3a

0 aauviag | NOIsaa

‘WiN3ud

© @
'®

8
®

WO ‘'vO

OO BODZO L0 =VNE=0V
w-Z00DO22ZA OO0V -=00
SLEXWr =20 & A CIWUN

ANIWIOVNVWN

@
o

4N3IWJ0I13A3A ADOTONHIIL

AN3IW3IOVNVYIN 30HNOS3IH NVYWNH

3UNLINYLSVHINL

NIVHI INTYA LINIWJ0TIAI0 FHYML10S

B. Boehm
TRW

1 of 18

$10NA0Yd HI1dWIS aTING
SL1N3INOdWOD H3D9IE ISN
30092 S$S31d013A3Q o

31d03d ILVALION e

AN3101343 JHOW Sd3LS YN o
Sdi1S 3LVNIWINI e

NHOM3IY ILYNINITI o

S3ILLINNLYOJIO 1S3DD18 @

B. Boehm
TRW

12 of 18

S1S0J INIWJOT3IAIA OL ITIVIS SLUVd HIHLO LSOW o
3AISNILNI-HOEYT o

30HNOS LSOJ 1S3IDUVT
A Sl VUV INIWJOTIAIA @

SIILSIYTLIVHVHI NIVHI INTVA

$30VNONV NOLLVHINID-HINNO4 —]
LIN3NOJWOD £
] 43009 5
SUOLVUINID NOLLYIIddY en E 2
BEen
SIUVHIN ANINOIWOD —— =

$1300N 8830044 $13NA0Yd

WIS

DONALOLOU OKdVY e

ININJOTIAIA TVINIWIUONE L |
SIDVNONVYI ONI- INOYS —
WHOMIY ALALLINOOMS
NOIS3Q GIQIV WILNIWOD JVMLdos —] . L trs 2AOUSN!

S3INLIVEE DNININVYDOUS NUIGOW ‘DNIOIH NOLLYWHOING —
AINViSISSY UVMIIOS 0ISVE-IDATIMONN —
ONINWVYNDOUS —

a3LYWOLNY 84318

21YNINGI
FINVUNSSY ALITVND ‘NOLLYININND0G GILYNOLNY —

SNOLLY1SHUOM —— JHOW
SANZWNOMAN] ‘$7001 SuvMLdos —| 54318 VI

ANINIDOVYNYIN — 374034

SNV — o o oW
DNINIVUL ‘ONIZSVLS ‘SIALLNION —1

J341 ALINMLYOdIO LNTINIAOYIWI ALIAILINGOYd

ALINEVIIIddY 40 NIVNOQ

(NOWLV1S 3DVdS ‘1OS) SNIVWOQ 3804UNd
SNIYWOQ avoue a3lznNvidads IIONIS m %
o 00L m .
JOVNONVYI ATOWISSY X
0 = —

SAULNUN SO ‘NVHLNOS

LNIWNOWANI QILVHOILN ‘opY (MLNOW-NVI
¥3d SNOLLONULSNS
INHOVYW
ANTTIVAINDDY
JB@:
(vainsoLi] 900°€

I0UINOGD

$S3008d
DNISSIO0Ud TYNDIS ‘UVAVY ‘SIINOIAY ety

404 SIOVNONV DY WO

SONIYL ALIALLINGOYd OGNV A90T0NHIIL F4VML40S

yaeosdde Juawabeuepy -
SJUJaW pue Spoylay -
ssaa0sd yuawdojaaap jo bunjuiyias Aejuawa|dwoy e

B. Boehm
TRW

15 of 18

abenbue| bunuwesbosd yqy 03 uonisues) -
juejsisse ajem}jos paseq-abpajmouy -
juawuosiaua poddns pajesbayu Ajng e

avJs ‘Isv) ‘buidhiojosd pidey -
desas pue }Jomas buneuiwi|y e

(3jqissod syuawanoidwi g

Jo 1039e}) suoneddde 9gQq awos 4oy sabenfue) uonesauab yiy -
Aseaqyy wauodwo) -

sjuauodwod aiem}jos 3|qesnay e

dea] wnjuen)) azem)jog pue SwasAg 0} sAa)y

(SLMOJIV WITIS0Ud FWVMLIOS) 2448 40 %
-t os os o o 0s o [4 o o
f T T I T T T T

B. Boehm

TRW
16 of 18

\ -

(%.448 8001)
€ 1031084 ML L

SWILI YSIH-HIIH MId V NI GILVHINIINGD Y S1S0T NHOMIY

B. Boehm
TRW

17 of 18

SISV 1TVIO3dS UV LNIWJOTIAIA AHVNOLLNTOAT ‘“TIVIHILYM e
SILALLOVY 40 XIW INIWYILIA SNOILVHIGISNOD NSIH @

N3AIHG-ANIWNIOO0A "SA NIAINGHISIH @

ONIJALOLOUd ‘ISN3H SILVAOWWOIIV e
OLLATVNY ‘JALLONGIA “SA JLLIHLNAS ‘JALLONANI @

$S300Hd HUVIANIT "SA TVIIT0AD ©

$S7904d FYYM110S 40 TI00W 1VHIdS

' T
1 Blc-s.ucc“ bt dae

B. Boehm

TRW
18 of 18

‘SINMI VNI W
SANSN IA NS A NLNIN "SI N0
‘BIMLVNIL IV JIVNTVAD Nownii N

s4319
HONOWHS
S MVON

Sl

1900 v
LY INNND

$$7704d I4VML10S 40 TIGOW TVHIdS

Visible Connections: The Open Architecture of the

Software through Pictures Environment

Anthony I. Wasserman

Interactive Development Environments, Inc.
150 Fourth Street, Suite 210
San Francisco, CA 94103

Summary

Interactive Development Environments has created Software through Pictures™, an integrated
ensemble of tools, on the principles of ‘‘open architecture’. A set of graphical editors support
methods for software analysis and design, including Structured Systems Analysis, Structured Design,
Entity-Relationship modeling, and User Software Engineering (USE). The tools store information in
a common data repository, called the IDE Data Dictionary, and allow users to structure their work by
systems within projects.

The editors are supported by a variety of tools for such tasks as completeness and consistency
checking of diagrams, generation of code and code skeletons, and generation of picture descriptions
in pic or PostScriptTM. There are approximately 90 such support tools for the six editors, including
the IDEtool that provides a mouse-and-menu interface to the entire environment.

A fundamental decision in the design of the Software through Pictures environment was to build
upon an ‘“‘open architecture” for software. Open architecture is a well-understood concept in
computer hardware, but we wanted to apply it as completely as possible to software.

We establis%&d the following criteria for our open architecture, which we named Visible
Connections

(1) it should be possible to invoke every component independently; users should have information
about all of the arguments and options that can be provided to each tool;

(2) all interfaces to the tools and to their inputs and outputs should be published so that other tools
can build upon those interfaces;

(3) the database schema used by the IDE data dictionary should be visible and extensible.

(4) all files used to produce user-visible messages, such as error messages, should be visible and
modifiable;

The collection of tools and files that are present in an open architecture should be organized in such a
way that the user of the tool set is presented with a coherent view of the environment. A particularly
effective way to achieve this goal is to organize the tools and files by logical level. At least four
such levels should be present in an open architecture for a software development environment:

(1) Integrated Environment Level

This level is a starting point for the user of the environment and starts up any global
mechanisms that are needed by tools working in that environment.

(2) Tool Level(s)
One or more levels is then devoted to the various tools that exist in the environment. If tools
invoke one another, then they can often be separated with the calling tools on the ‘‘higher”’
level and the called tools on the ‘‘lower” level. Various libraries and utilities used by the tools
can often be associated with a separate level.

(3) Data repository level .
Tools in an integrated environment should be built upon a common data repository. This level

A. Wasserman
IDE
1 of 21

contains the programs that manage the data repository, possibly a database management
system.

(4) File interface level
This level contains text files used and/or produced by the tools in the environment in a form
suitable for use by other tools. For the architecture to be fully open, all of these files should be
user-readable, and should either be free text or a file with a well-defined syntax.

We perceived several advantages in the open architecture approach:

(1) users already have tools, either locally developed or separately acquired, that they would like
to integrate with our tools; furthermore, they would be adding to those tools in the future;

(2) the visibility of flags and arguments for each component provides the user with the ability to
customize the tools;

(3) access to files, messages, and schemas provides similar possibilities for tool customization,
extensibility, and integration.

There are also some disadvantages associated with an open architecture, including the following:

(1) it is easy to add new tools that use existing interfaces, but more difficult to modify existing
tools when the external interface must be changed; users may have built tools that depend on
the existing interface and even conversion routines may be insufficient;

(2) interfaces, such as file formats, message files, and databases, must be saved in a form that
allows them to be accurately described and easily processed by other tools; some performance
penalties may result from this requirement;

(3) there are many more aspects of the environment that can be affected by the user and the
developer is unable to predict and to test all of the changes that might be made by various
users, some of which might lead to system errors;

(4) because there are so many aspects that can be affected by the user, it is more difficult for the
user to obtain comprehensive knowledge about the tools and environment; additional training
and experience is needed for a ‘‘software environment administrator.”’

The Visible Connections architecture has served us and our users well, and we regard it as a
significant contribution to the understanding of integrated software development environments. It
yields four advantages that are valuable both to developers and users of software development
environments:

(1) it allows user customization of the environment to support local preferences;

(2) it allows extensibility of the environment by both developers and users with minimal impact on
the existing base;

(3) it encourages the development of modest-sized software components rather than large
monolithic tool systems;

(4) it can provide multiple interfaces to the same functions, thereby providing appropriate support
for different classes of users.

Software tool environments are changing very rapidly, with many different tool builders, and it
would be helpful if various tool building efforts could be effectively combined with one another.
The open architecture approach can effectively contribute to this goal.

Unix is a trademark of AT&T Bell Laboratories. Software through Pictures and Visible Connections are
trademarks of Interactive Development Environments, Inc. PostScript is a trademark of Adobe Systems, Inc. Ada is a
registered tradement of the U.S. Department of Defense (Ada Joint Program Office).

A. Wasserman
IDE
2 of 21

-

THE VIEWGRAPH MATERIALS
FOR THE

A. WASSERMAN PRESENTATION FOLLOW

Key issues in software environments

e Software tool architecture
— Open vs. closed
— Tool interconnections

e Project database (‘‘repository’”)
— What is an object?
— What should be saved?

e Computing support for software development
— Workstations -- dedicated processing
— High resolution displays -- graphics
— Multiple windows

e Life cycle coverage

e Physical workspace
— Office environments
— Staff support
— Ergonomics

A. Wasserman
IDE
3 of 21

Issues in Architectures for
Software Development Environments

e Open vs. Closed Approach
e User View
e Internal communication structure

e Underlying database support

A. Wasserman
IDE
4 of 21

5
B >

What is an open
software architecture?

e Multiple level access
— separate invocations for different levels
— suitable for distributed environment

e All interfaces published
— file formats
— database schemas

e Uses common standards
— ASCII text
— pic, PostScriptTM languages

A. Wasserman
IDE
5 of 21

Advantages of open
software architecture

e User customization of environment
— Local options and preferences
— Translation of text messages

e User extensibility of environment
— Add local tools
— Add other vendors’ tools

e Small components
— No monolithic closed system

e Multiple interfaces to same functions
— Supports different types of users

A. Wasserman
IDE
6 of 21

Multiple levels in a
software tool environment

e Integrated user view

e Software tools
e Data repository and management functions

e File interface

A. Wasserman
IDE
7 of 21

Goals of the
Software through Pictures

Environment

e Customizability
e Extensibility

e Usability

e Sharing

e Project database
e Checking

e User control

e Hardware technology

A. Wasserman
IDE
8 of 21

Software through Pictures’

Framework for integrated software development environment

— Extensive opportunities for customization
— Powerful mechanisms for extensibility
— Integrated front end for environment

— Tool communication through database

Graphical editors for analysis, design, and prototyping

Support for different views of software models

— Data Structure Editor

— Entity Relationship Editor
— Dataflow Diagram Editor
— Structure Chart Editor

— Transition Diagram Editor
— State Transition Editor

Completeness and consistency checking of models

Multiuser support

— Shared database

— Diagram locking

— Integrated version control

— Works in heterogeneous network environment

Built upon Visible Connections™ open architecture

— Published file formats

— Published DBMS schema and scripts

— User-modifiable message files

— User-modifiable project directory structure

— Visible linkage to user-selected version control system
— Use of standards

A. Wasserman

IDE
9 of 21

IDE Tool Architecture

Unified user view
— IDEtool

Location independence
— Tool Information File

Open architecture

— Published file formats for extensions

— Published database schemas

— Published individual tool invocations

— User-modifiable IDEtool specification
— Visible message files

Project database

— IDE Data Dictionary

— History information

— Linked to Software through Pictures editors
— Extensible schema

A. Wasserman
IDE
10 of 21

IDEtool

Startup window

— Provides uniform view of environment
— Takes advantage of mouse/menu/icons/windows

Created dynamically at runtime
— Uses text file

Provides access to all IDE tools and options
— User customizable

Easily extended for new tools
Integrated help and error messages

Hides command structure and underlying OS
— Reduces learning time for tools
— Reduces error rate for new users

A. Wasserman
IDE
11 of 21

IDEtool window regions

Tool stripe
Message area

Control panel
— Project and system information
— Version information (optional)
— Control buttons
— Help Mode

Tool group area
Command area
Options and arguments area

Teletype subwindow

A. Wasserman
IDE
12 of 21

IDETOOL (3.8)

Praject Directory: /usr/ide/project
System: example Level:

{_Execute J(Reset J{C Quit) [0B Open] ([Help Mode]

T ~ bzd S [Diagram Ut1lities]

E E E {Project Database]
=] [Version Control)

[IDE Data Dictionary]

gé(% gpg [More Ut1lities)

Teck

[Print Diagram) [Check Decomposition] [Generate IDE/DD]
[Check IDE/DD] ([Pspec for diagram] [Pspec for a single Process] [Pic]
[PostScript)

Draw: Control Flow Diagram
Show: Control Flows A1l Flows

Symbols: Gane/Sarson

Process Index Position: [[J3 Bottom

:Show full Process Index]

/dev/sd
fhome (1
/usr/id4
jhome (1

fhome (1 3=
Iscreendump | 1pr -v -h
thome (14) 11
[screendump | 1pr -v -h

A. Wasserman
IDE
13 of 21

Project Directory: /usr/ide/project/
System: example Level: @

(Execute) (CReset) (T Quit '} [DB Open] [Help Mode]

fsx1) [Diagram Utilities]
%
s SE {Project Database]
[Version Control]

[IDE Data Dictionary]
[More Utilities]

o

Teck

[Print Diagram) [Chack Decomposition] [Generate IDE/DD]
{Check IDE/DD] {Pspec for diagram] [Pspec for s single Process] ([Pic)

[PostScript]

Draw: Control Flow
Show: Control Flows A1l F1

Symbols: Gane/Sarson

Process Index Position: Bottom

Show full Process Index]

(Read J{_ Load J(_Store] System: example Level: 8
(Redisplay){_ Center)[MNTYM) Project Directory: /usr/ide/project/
(Quit) Push_J(__Pop) Align: 32 oraw: B 3

(Oisp_Det) Zoom: vay: EEN] se: BB

ol

COMMAND
T cosmand 1d,

ein arg count,
max arg count

2

systes
cosnand axecute sessages
srror nase cossand
sessage comaand td,
argusent list
1nput 1tne

3

generate
report

report
command nase, information
argueent list,

user 1d, tisestamp

TRANSACTION LOG

O]

A. Wasserman

IDE
14 of 21

((_Read J(Load][Store) System: example Level: @

(Redisplay](Center) (WMYGM Project Diractory: /usr/ide/project/
C it) Fosh) Pop) Alian: 16 bra: B F

(Cfsp Det)zoom: W w4 112 R 7] gnou:

(

Read J(__Load J{ Store) System

(Redisplay)(_ Center)WNUILM] Projec

(

Quit _ J(C Push J(_Pop]} Align:

(Disp Def)Zoom: IR /4 1/2

<)

aessages

error
wessage

1nput line

COMMAND

—_———

cossand id,
ain arg count,
max arg count

2

systes
coamand execute -ezsagesm.!:>
nase comaand
command id,
argusent list
3
report
cossand nase, generate ;4 ¢ormation

srguesent 1ist, report

user 1d, timestamp

TRANSACTION LOG

error
nessage

S
systea
wessages
L
help command
agssage response
header cossand
output
D TP SNURLIT WP VRPN - 3 Yoy

A. Wasserman
IDE

15 of 21

Developers can modify the environment

Processes activated by pop-up menu selections
Processes specific to diagram node types
Processes to be activated with one command
Startup menu and user interface (IDEtool)

Text editors for symbol editing PDL and
““mini-spec’’ templates

Pop-up menu labels
Project database schema
Help and error messages
Panel button labels
Printing interface

Print status messages
Tool information file

Locations of tools, databases, message files

A. Wasserman
IDE
16 of 21

Visible and Modifiable Messages

e Error messages
e Help messages
e Menu items

e Panel items
— Buttons
— Sliders
— Icons

e DBMS scripts for IDE Data Dictionary
e ““Minispec’’ and ‘‘PDL’’ templates

e Project directory creation script

e IDEtool specification file

e Tool Information file

e Formats for output reports

e Easy modification and/or translation

A. Wasserman
IDE
17 of 21

Tool Information File

e Location independence

e Parameterized environment with initial defaults
e Global/local/personal versions

e Attribute-value pairs in text file

e Tool Information functions in IDE tools library

A. Wasserman
IDE
18 of 21

IDE Multilevel Open Architecture

IDEiool R rool
Dataflow Entty Structure Data Transition PICture
Diagram Relationship Chart Structure Diagram editor
Editor Editor Editor Editor Editor
[[1 I
SIJUSE' "IDHLE1 r>=-=-=-1" r Tode 1 r=—"-" I"‘l"'l.
ﬁ 5E, ! Dict.ion:ry I 1 Analysis IG:;:;MI 1 pic 1 PostScript|
Tools 1 L1 Tools | [| interface | | Interface |
Interface Tools
tbe die_dd die_decomp) tduse dipic dfpost
extract sce_dd Check_ — sCp SCpIC scpost
ﬁ struct_ IDEdd ertroll erpic erpost
o dsdd dsstr }— dspic dspost
tmp tde_dd dipspec tdpic tdpost
petpic tpost
ch ®
User
rograr /@
IDE
Tools
/ =
Troll/USE
RDBMS
User PDLorcode | C,Pascal or Ada i PostScript
databases skeleton declarations El’:s files
Project System Tool RAPID/USE _ Process Troly/USE Dizgram
8! auon code specification schema files
Published file formats

Published database schema for IDE Data Dictionary
User-modifiable messages and report formats

Diagrams stored in ASCII
Pic and/or PostScript™ output of diagrams
Tool Information File for location independence and customization
IDEtool built from textual IDEtool specification file

Integrated
Environment
Level

Graphical
itor
Level

Support
ool
Level

Tool
Library
Level

Data

Base
Level

File
Interface
Level

A. Wasserman

IDE

19 of 21

IDE Tools are Extensible

Feature

All files are stored in ASCII or are
easily convertible to ASCII

All IDE file formats are
documented

All IDE graphics are translated
into device-independent graphics
languages: pic and PostScript

All Software through Pictures
tools are supported by a compact
and efficient relational DBMS
(Troll/USE)

IDE tools communicate through a
user-customizable tool information
file

The tool information file is built
upon the IDE tools library

Benefit

Supports open architecture for
tools

Allows users to build additional
tools that interface easily with IDE
tools

Supports most popular high
resolution printers

Supports important software
engineering concept of project
database

Can be used both for project and
application database requirements

Allows users to add new relations
and attributes

IDE software is location-
independent

Users can modify IDE standard
environment to suit local needs

Both IDE and users can add new
attributes and values to the tool
information file as the tool set is
extended

User programs can be easily
linked to Troll/lUSE and
RAPID/USE

A. Wasserman
IDE
20 of 21

Integrated development environment

IDEtool startup window

Linkage to project directory/system
Mouse/menu/icon interface

Customization of default options
Extensibility of tools, commands, arguments
Integrated project database

Integrated locking and version control
Integrated help

Integrated error reporting

A. Wasserman
IDE
21 of 21

PANEL #4
SOFTWARE TESTING
J. Knight, University of Virginia

N. Leveson, University of California, Irvine
A. Goel, Syracuse University

DATA DIVERSITY

AN APPROACH TO FAULT-TOLERANT SOFTWARE

Paul E. Ammann John C. Knight
Department of Computer Science

University of Virginia
Charlottesville, Virginia.

A Summary

Submitted To The Eleventh Annual Software Engineering Workshop

Goddard Space Flight Center
Greenbelt, Maryland.

J. Knight
University of Virginia
1 of 22

In an effort to provide substantial improvements in reliability of the software for crucial applications,
various methods of building fault-tolerant software have been proposed. Such software is constructed with
the assumption that faults may survive the development process, and the structure is designed to cope with

the effects of those faults at execution time.

The two best-known existing methods of building fault tolerant software are N-version programming
[1] and recovery blocks [2]. N-version programming requires the separate, independent preparation of
multiple (i.e. ““N’*) versions of a piece of software for some application. These versions are executed in
parallel in the application environment; each receives identical inputs and each produces its version of the
required outputs. The outputs are collected by a voter and, in principle, they should all be the same. In
practice there may be some disagreement. If this occurs, the results of the majority (assuming there is one)

are assumed to be the correct output, and this is the output used by the system.

A recovery block is a structure in which the results of an algorithm are subjected to an acceptance
test. If the results are deemed unsatisfactory, the state of the machine that existed just prior to execution of
the algorithm is restored and an alternate algorithm is executed. This process may be repeated until

satisfactory outputs are produced or the set of alternates is exhausted.

Both of these techniques rely on the availability of multiple implementations of an algorithm to allow
faults to be tolerated. This is termed design diversity because the different implementations are assumed to
contain different designs and thereby, it is hoped, different faults. Clearly, either method incurs the capital
investment required to construct the multiple implementations. N-version programming also incurs the

operational cost of executing the algorithms.

It has been observed frequently that software often fails at boundary points in the input space. A
program may work well for many input cases, survive extensive testing, and then fail on an input case
associated with a boundary condition. This condition may take the form of what seem to be an obscure set
of conditions in the input data. The boundary need not be an obvious boundary in the set of values taken
by any specific input. In fact, the boundary is usually associated with a transition in the required

processing algorithm.

J. Knight

University of Virginia

2 of 22

This phenomenon is well known and is, in fact, the basis of a theoretical, but not very practical,
testing technique [3]. However if that method is not used, faults associated with boundary conditions
frequently fail to show up in testing precisely because they require an exact and unexpected set of
circumstances that are not generated during testing. It is usually not sufficient to generate a test data set
whose values are merely close to the values which cause the program to fail. If, during testing, the special

case is not generated exactly, the software usually works correctly on the generated test cases.

There is a strong implication from these observations that if software fails under certain execution
conditions, it is very likely that a minor perturbation of those execution conditions would allow the
program to work. This is the observation underlying a new approach to fault tolerance that we term data

diversity.

In the diverse-data approach to fault tolerance, we make use of the noted phenomenon by
reexecuting the same software that failed but with slightly different inputs. As with any form of fault
tolerance, an approach using data diversity has to be able to do detect the error. The application of data
diversity therefore involves combining the notion of executing identical software with slightly different

inputs and some scheme for error detection.

Clearly, this general approach is not suitable for all application areas. It is however well suited to
control systems in which sensors are read and actuators set. Sensors are noisy and inaccurate, and small
systematic perturbations of sensor values in order to cope with a fault would still allow the software to

generate acceptable outputs.

We have defined a program structure that takes advantagé of data diversity by executing multiple
copies of a single program. The copies are executed in parallel and each receives a slightly modified form
of the input data. The results are voted in much the same way as occurs in an N-version system. We refer

to the program structure that results as an N-copy program.

We have also defined a modification of the recovery block structure that uses data diversity. We
term this approach the retry block. The concept of the retry block is quite simple. Rather than preparing

multiple alternate algorithms as is done with the recovery block, there is only one version of the algorithm.

J. Knight

University of Virginia

3 of 22

It is supplemented by an acceptance test that has the same form and purpose as the acceptance test in a

recovery block. The semantics of the retry block are to execute the algorithm normally and follow it with

evaluation of the acceptance test. If the acceptance test is passed, the retry block is complete. If the

acceptance test fails, the algorithm is executed a second time but the data is modified prior to execution.

Clearly, this approach can be repeated and the retry block executed many times if desired.

We have obtained empirical evidence of the expected performance of data diversity by examining

the effect of minor changes to the input data on the known faults in the programs produced for the Knight

and Leveson experiment [4]. The results indicate that, although the performance of data diversity is quite

varied, it can produce a substantial reduction in failure probability at virtually no cost.

This paper will describe data diversity as an approach to fault-tolerant software in detail and present

the results of empirical studies.

0]

@

©))

@

REFERENCES

L. Chen and A. Avizienis, ‘‘N-version programming: A fault-tolerance approach to reliability of
software operation,” Digest of Papers FTCS-8: Eighth Annual International Conference on Fault

Tolerant Computing, Toulouse, France, pp. 3-9, June 1978.

T. Anderson and P.A. Lee, Fault Tolerance: Principles and Practice, Prentice Hall International,

1981.

L. White and E. Cohen, ‘‘A Domain Strategy For Computer Program Testing’’, IEEE Trans. on

Software Engineering, Vol. SE-6, No. 3, May 1980.

J.C. Knight and N.G. Leveson, ‘‘An Experimental Evaluation Of The Assumption Of Independence
In Multi-Version Software’’, IEEE Trans. on Software Engineering, Vol. SE-12, No. 1, January

1986.

J. Knight
University of Virginia
4 of 22

THE VIEWGRAPH MATERIALS
FOR THE

J. KNIGHT PRESENTATION FOLLOW

i) {/V/ A DEPARTMENT OF COMPUTERSCIENCE

4 N

DATA DIVERSITY
AN APPROACH TO SOFTWARE

FAULT TOLERANCE

Paul E. Ammann John C. Knight
Department Of Computer Science

University Of Virginia
Charlottesville, Virginia 22903

Sponsored By NASA Grant Number NAG1-605

_ /

J. Knight
University of Virginia
5 of 22

z / ‘/ DEPARTMENT OF COMPUTER SCIENCE

N

FAULT TOLERANCE THROUGH

DESIGN DIVERSITY

® N-Version Programming:

— Multiple Implementations Oof A
Specification, Developed Independently

— Executed In Parallel
— Outputs Voted To Select System Output

— Faults Tolerated By Presumed
Differences In Design Of The Versions

® Recovery Block:

— Multiple Implementations Of A
Specification, Developed Independently

— Executed In Series
— Output Checked By An Acceptance Test

— Faults Tolerated By Presumed
Differences In Design Of The Versions

/

J. Knight

University of Virginia

6 of 22

s

{/V A DEPARTMENT OF COMPUTERSCIENCE

[
\ \‘

FAILURE REGIONS

® Input Space For Most Programs Is Hyperspace
With Many Dimensions

® For Example:
— Twenty Floating Point Inputs

— Twenty-Dimensional Space
® Sometimes Varies From Execution To Execution

® Certain Region(s) In Input Space Contain Data
Cases Causing Failure

— Termed Failure Regions

® What Are Their Characteristics?

— Shape
— Size
— Etc
® Seeing Some Might Provide Insight /
J. Knight
University of Virginia
7 of 22

(fmr) {J1/ A DEPARTMENT OF COMPUTERSCIENCE

CROSS SECTIONS

e Cannot Display Multi-Dimensional Spaces
e Can Display Two-Dimensional Cross Sections

@ Approach:

— Systematically Vary Two Inputs Across
Range

— Keep All Other Inputs Fixed
— Determine Correctness Of Output
— Plot Correct vs Incorrect

— Plot Transitions In Output Values

@ Previous Knight/Leveson Experiment:
— Twenty-Seven Programs
— One Million Test Cases

— Identified Faults

K ® Many Sections Obtained From These Faults J
J. Knight
University of Virginia
8 of 22

N R B E B2 BB BB BB B BB B BN N B BN

-

z / ‘/ DEPARTMENT OF COMPUTER SCIENCE

¢ 6 0 0 06 6 0 0 06 6 00 06060608 000 0

'_ /

Il B NN EEEEEEEDEEPSEENEBD

J. Knight
University of Virginia
9 of 22

I E B B u B s EEEE T .- ESESNSEN=E-S

[JV/ A DEPARTMENT OF COMPUTERSCIENCE

\

~

e o o
e e o o o

® ¢ ¢ o s o
L]

* o 0 0 00 0 8 o

e e e o s 00 000

® o 0 0 00 0000 0o

® 80 0600 0000 0 00
@ ¢ 6 0 06 00 0095 00 o
® ® @& 0 0 0 0 e 000 00 e e
e 9 00 ¢ 0000 00 0
® 6 060 0 8 00 00 00

e ¢ 0 009 0 0 0 0

® 60 0 800 00 00 0 s

@ ¢ 00 2 0 8 0 00000000

.
L]
. .
. .
¢ 0 6 0 ¢ 2 0 s 00 0 0 e e
. .
© ¢ 0 8 9 0 0 0 0 0 9 00 0 s e
.
.

* 0o 0 0 s 0

il

University of Virginia

J. Knight
10 of 22

University of Virginia

J. Knight
11 of 22

® & 0 8 0 8 0 00 02 8 00 0 0 0 e a0 s s o0
® @ 86 8 ¢ 6 0 0 8 0 ¢ 8 08 0 e 6 0 e 90 0 e s e o

@ 6 @8 0 00 00 06 0 9 0 00 00008 b0 b|lee e o0

@ &6 6 0 0 0 0 0 2 8 0 s s e 0 e e 0 e e e e s
® 6 0 8 6 ¢ 00 0 0 e 0 000 0 e e e e 0 e
® 6 6 8 8 0 0 s 8 0 e s e e s B e 0 s e 00
® % ® 0 ¢ 0 0 0 0 0 0 8 20 0GP L s e s e e o

D I R I N B I I A E R R I S B I I)
®© 6 6 5 6 4 0 00 6 00 00 sl0os s e 0000000 0
® ® 4 8 6 8 s a2 02 0 0 0 e]e 0 s e 0 00 0 e e 0 0
© 6 @ ¢ 0 0 0 0 2 s s o]0 0 6 00 0 000 s e e s
¢ 6 o s 0 ale 0o s 0 0 0 06000 0 a0 00000 0 0e

oo & o o ¢ o 06 6 0 s 0 06 0 0 0le e 000 00 0 0
e 6 6 06 8 ¢ 0 0 0 0 4 0 28 % 000 0 s|le e o000 e o

® ® @ 6 5 2 6 5 ¢ 6 % P e T G S LG s 0 s s e 00
@ 9 o 8 6 e 0 % 0 0 8 06 00 e 0 s e 0 e 0 s e e s
® © % 8 6 & 0 0 0 0 0 0 00 0 s 0 00 60 s 00 s 0 s
@ 6 ¢ ¢ ¢ ¢ 8 8 8 ¢ 6 s 4 s 0 e 0 e e s e e e e
®© ®© 0 % 0 & ¢ 0 9 & 8 s s 0 0 800 s s e e 000 s e
® 6 © 5 0 & 5 0 ¢ 5 0 8 00 s 0 s GG 00 s e e o
® ® ® 0 6 6 0 0 8 00 s 000 000 s e 0 00 00 o
® 6 8 0 6 & 8 60 00 08 000 8080 e 0000
®© 8 6 @ 0 @ 00 8 8 0N G000 0L e
®© 6 8 0 0 0 006 0 0 T e s 00 e e s e e VY
€ @ 06 0 0 ¢ 0 0 0 20 0 00 0 00 0000 0 sflee 0 o0
@ 8 06 06 0 0 0 0 0 0 0 0 40 0 00 000 e|le e e 0
® 8 0 0 8 & 0 ¢ @ 0 0 0 st s s e 0 s{e a0 e e o
¢ ® 0 0 0 0 0 0 0 0 0 0 00 0 00 0|00 0 e 0
o @ 6 0 @ 0 0 0 0 0 0 000 s o]le 0000 0 e e
@ ® 8 6 6 e 0 a0 v 0 6 a0 G|t e e e e e e e e e e

\ ill 1 {JV/ /A DEPARTMENT OF COMPUTERSCIENCE

. . ¥ 3
B ¥ 7
- -

® 6 6 o 000000 0 0 0

o o 0 8 00 s 0 s
e o o 0 000 0 0 e

® 8 0 0 0000 0 000 0o

® 0 0 0 00 0 0 0
e o 0 0 00 0 0 0 o

® & 0 0 0 00 0 0 0 0 00

® ¢ o 0 0 0 006 00 0 00 00

e o o o 00 0 0 0 0 0

® & 0 0 0 0 00 00 0 000

® % o 06 e 0 000 0000 00

® o o ¢ 00 0 0000000 000

© 0 6 0 0 06 0 00060 0 000

® ¢ 06 0 060 0 06 0900 000 0 00

© 2 0 8 80 006 000000 0 00

¢ o 8 ® 0 0 0606 0 068000000

e e 6 6 0 0 s 0 0 8 00000000

o o % 8 60 00 a0 9 s

© ¢ ® 2 @ 0 0 0 0 0 00000480

e o % o s 0 0 8 60 8 0

e e e 0 0 08 e 0o

® © 6 0 0 8 6 0 e 8 0 0 s 000 0 0 000

@ ¢ % 20 0 0 s 0 0 000 00 s 00 s e e

e ¢ e 0 e s 8 0 00 8 0 s e

®© 85 ¢ ® 8 60 000 060 0 0 0 0008000000

¢ 0 6 & 060 0 0 00 0 8 0

@ 9 8 20 60 000 000 000 e

@ 6 6 08 0 060 ¢ 0 0 e s s 08 0 e e e e 0

* 6 6 0 0600 08 0800 0 s 0

¢ o e 6 02 08 00 06 00 00

® © 0 6 0 0 0 0 00 00 0 00 0 0 0000000 00

@ ¢ ¢ o 00 0 0 s e 0 00 e

LI I I I T Y I I SN I Y R TN Y R R S

® 6 6 0 000 0 00 0 0 s

® & & & 0 0 0 0 0 00 0000 00 e e e e e 0 e

© o 0 00 00 0 00 e 00 e o

LR A K B R Y R I B B R I I I I SRR Y SN S)

@ © 8 0 0 6 6 0 0 0 0 0 00 00 00 00 0 0 00 000 e e
® 6 0 0 0 0 0 0 5 0 0 0 00000 0 0 0 0 0 00 0 e e o0
L R I R IR I B B I I I I I I I I I S Y

® 6 % 6 0 80 0 00 0 0800 0o

® 6 & 5 000 0 00 e s 00 0o

® e e 8 00 0 0 00 o000 0

® 6 @ 0 0 0 0 0 00 00 0000 e s

e o e 00000 00

® 0 ¢ 00 00 0 00 0 0 0 0 000 0 o0

® 6 6 6 8 6. 0 0 0 0 0 00 000 08 0 8 000 000 0 e s 00

® ¢ 0 0 0 0 0.0 0 0 0 0 00 0 00 0 000 0 00 00 009 0o

® o 0 0 0000 @0 s 00 o

® @ @ 6 0 0 8 9 0 0 0. s e 00000 0P e e e s e 0 e s e

® 06 0 0 0060 0 06068 000

® 9 8 9 2 0 0 0 0 0 L e 0 s e T e e e e e 0 0 e e 00 00 00

® 06 6 00000 00 0o

® ¢ & 0 0 9 0 T O 0N O L e s e e e s e 0 e e e e e 00

® o0 0 0 ¢ e 0 0

L A A L A R I A A B B BT S IR I BRI BN I N A

® 2 o 8 ¢ 00 0 oo

.
.
.
.
.
.
.
.
.

® © 8 6 0 0 9 8 5 0 T T e P e e e 0 e e e 00 e e

e oo e 0 00 0

@ ® 2. 8 0 5 8 0 ¢ 0 8 s 0L e e e G e 0 0 e 0T 0 e e s e

e s s s 0 s

® ® 4 0 0 0 4 8 0 0 0 % s s G0 0 008 08 s e 0 a0 s

® 6 & 8 5 9 0 & 8 ¢ ¢ 00 eV S e P O G G 0 e e 0 e P e 0 e

® ® 0 8 8 8 0 8 6 s 0 s e 0 s e e s s G0 s s a0 s 0

® & 6 0 & 4 0 0 ¢ ° 2 0 0 0 0 0 9 % e e e s T 00 e e o0

® € 8 % & 0 6 6 0 0 a0 e s e 0 e e e s s e 0 s 0 s e

® @ 6 ¢ 0 ¢ 0 08 s e e 00 9 s e 0 0 s s e 0 0 e e 0 0 o

® & 6 5 8 0 8 0 P C G GO L e e 00 e e a0 e e o

® ® 0 2 6 6 8 0 0 8 0 0 0 2 s e e 0 0 e e s e 0 0 e e

® ® 6 0 0 6 6 6 0 0 8 0 0 0 0 s 0 s 0 0 s 0 e 00 0 s 0 o

) {JV/ A DEPARTMENT OF COMPUTER SCIENCE

J. Knight

University of Virginia

12 of 22

L

Tl { /1 A DEPARTMENT OF COMPUTER SCIENGE

I\

"HE EEEREEREERENRNELN

University of Virginia

J. Knight
13 of 22

|l - m .

University of Virginia

J. Knight
14 of 22

M L A A R EEEEEEEEEEEERE R
M T I I I I I I O I R R I N S S T e I R A I A)
MR A A A I N I R R A I I BT B S AR IR I T N R I S S S Y
A A A B I I I I R R A I I N I I S R O R I I .
S % 0 9 0.4 0000000000200 PO LS OEOEEIEE OSSO ESEOSIEOEIOIEOSIETECLEOEOTS .
A A A A L R I I I I T R R A R R R R R R S S S S S A SR S S IR
A A A I I I N I R B R R T S R I I S N I R i A N A DR I
® 9 6 0.0 0.0 0 0 0 0T P LI ELE IS ELEI LI ELOEOSIOEOIEOSEDOE OO EOCOS e e 0 0 0 0
® 9 0000000000000 9P 0L LE L ENLOeLEOELIEOLIIOEIEOITOIOCOEEEOEOSOETS ® 00 00 0
L A A A A A e I I I N A A I I I A I N I N A I S I I N S S N ') ® 6 0 0 0 0 00
M A A I I O I I N A I N R I A I R I I I S S Y ® 0 0000 000
LA A A I I I O I I I I I R I I R R R I S I R R A A IR I ® e e 0 0000000
L A A I I I I B I I B T I SR N S N A A N R N N S R S Y ® 0 00 000000000
AR B L I R R I I R I N R S S S S SN RN S T I IS T S Y ® 6 0 00 0 000 00 e
AL A 2 L R R T I R I B I I B I N I N I R R I I I N N S Y DI R R N A)
L A A L A R N I A A A I I I I I I R R I R R N R S S ® ¢ 0 0 0 0000000000
LA A I R I R S T T S T T ST ST S SN ST S T S T ST Y ®© 0 0 0 00 00000000
LA A I I R I I I R R R N T T S S S N S S S ® 0 0 0 0 8 00 000000 000
® ® 0 2000000000009 00000 PG OGLLOLOEDLES LR B R N I I R RS Y
LA A R I I R I I I R S N N N SN T R N T Y ® % 0 0 2 00 0000t
® ® 8 0 0 00 0 000 00 s 0 000 0 s L e a0 e s s L R I I R e I A A I I)
il L I A R R I R I I T S R A T N S S N Y ® % 0 e 0 0 s 0 0000 e s e 0
AR L I I I R I R R R I I N I I I T S SN ST S S Y LI I A I A A I R I I R B R R A I R R)
AR I L R R I Y Y R R I I I S S R I Y LA AR AR A O I I R R I I I I)
7S L I T T S S Y LR A L B I I I R R R I R A A A)
% L R E R EE TS LR A L 2 B I I I I I I I S S S S S SR Y
LI S NN EEEEEEE R EES L L A I I I N R I T N T T A ST S ST PO
m L N RN Y L I 2 B I B I N I N R R S NN T ST SN N SRS
® 8 ¢ * 0 0 00 e et e e e e e s e LA A BN 2 K I I B I I Y BT Y I I T T S RS S S
M ® S 0 0 e 00 0000800000000 LR L I A L A A Y R I I I S I R T Y T ST ST GRSy
® 8 0 0 e 0000 v s e e s e 0 9 0 0 00 % 0P 0PN EUT DI OCEEOEOLEOCECEOLIEEOEEOEOSIE O TOGTTS
M o o e 05 0 s e e e 0 0000800) ® 9 2 0 0 0 900 P e L 0L LR LSO OEOEIEEOEOEIEOETTTETE
w ® 6 e 0 000000 e . ® 9 9 0 0 0 0000 000t LE LI OCEOEOSEEEOSIEOEOSITBSIEOEOS
® 6 ¢ 000 00000 e ¢ e s L I R
(19 LR R B R A I I R N A * e 0 s 0 L e I A)
o LR I I I N * o 0 0 00 ® € 2.0 0220 EL OO SOOI OO EOEST OO TORETS
s e e 0000000 DR I I) ® © 000000 000000 L GO LT EOOLOESEOEIGEECEOES
® e 0 0 00 0o € © 2 0 0 0 5 0 000NN TN L O EO O ECESOEIDIOIEEOLOCEOEOGLE
M ® e 0 0 s 0 e LA A A L L B I N S I S S P,
¢ v 00000 L A L
® e 0 0 00 © 0 0 0 9 0 9 0 T S LT E LN C OO NI O NFEE NGO NELIOEOEOGEOSEOSE TS ® e o 0 0 0
® o 0 0 0 LR A I I B A I e I I I R R S S S
9 e o o o L L I I I I I . I T T
. L I R I I I I
Q d L A A A S S AP
L R A A A N N N R EE T
(L A L A B B O I R B B K B R A R B R R SN T T T RS S SRR
L A I I R e R e I A N N I I R R EEE I
A A I R L I I I T S S R TS S S S OO
qQ
—
_—
-
-]

University of Virginia

J. Knight
15 of 22

[JV/ A DEPARTMENT OF COMPUTERSCIENCE

11

N /

, . 5

111

o

{JV/ A DEPARTMENT OF COMPUTERSCIENCE

\ \‘

_

DATA DIVERSITY

® Programs Tend To Fail On “Special” Cases
— Why?
— Because Failure Regions Tend To Be:
e Small
e Irregularly Shaped

e Close To Output Transitions

® How Could This Observation Be Exploited?

— If Program Fails, Rerun With Slightly
Different Data.

— If New Data Outside Failure Region,
Program Will Succeed.

— If Output Still Acceptable, Fault Has
Been Tolerated.

® We Term This, Fault Tolerance By Data
Diversity.

/

J. Knight

University of Virginia

16 of 22

)

-

Hiy

{/V A DEPARTMENT OF COMPUTERSCIENCE

~

PREVIOUS WORK

® Idea Suggested Previously As Special Cases

® Gray - Tandem Corp
— Rerun Asynchronous System

T~ 4m]~ an
— LJLCICIIL UldCI O

Fault

® Shepherd et al - Cranfield Inst. Tech.

— Run Multiple Versions With Inputs
Skewed In Time

® No Need To Rely On Chance Reordering Nor On
Data Changing With Time

® We Propose General Diversity In Data

— Re-Express Data Algorithmically

J. Knight

University of Virginia
17 of 22

l‘,

) {JV/ A DEPARTMENT OF COMPUTERSCIENCE

—

-

DATA DIVERSITY USING

THE RETRY BLOCK

Execute
Algorithm

Acceptable Re-Express
Output? Data
Continue J
J. Knight
University of Virginia
18 of 22

Ml {/V/ A DEPARTMENT OF COMPUTERSCIENCE

A N 4

- N

DATA RE-EXPRESSION

Y

N /

J. Knight
University of Virginia
19 of 22

AN

-

11 (/ {/ A DEPARTMENT OF COMPUTER SCIENCE

ﬁ

RETRY BLOCK

RELATIVE PERFORMANCE

Retries 1 2 3

Displ {0.001 0.01 0.1 [0.001 0.01 0.1 [0.001(0.01 0.1

Fault
6.1 0.00 10.00 | 0.00 | 0.00 |0.00 |0.00 | 0.00 | 0.00 }0.00
6.2 1.00 {098 | 0.87 | 1.00 |0.96 |0.81 | 0.99 [0.94 |0.75
6.3 0.00 |0.00 [0.00 | 0.00 | 0.00 [0.00 | 0.00 [0.00 | 0.00
7.1 0.92 10.59 [0.26 | 0.87 10.43 |0.11 | 0.80 | 0.29 | 0.03
8.1 0.00 [0.00 {0.00 | 0.00 | 0.00 {0.00 | 0.00 {0.00 §0.00
8.2 0.00 | 0.00 1 0.00 | 0.00 [0.00 | 0.00 | 0.00 {0.00 | 0.00
9.1 0.99 [0.90 |0.39 { 0.97 10.83 |0.19 | 0.97 | 0.74 | 0.07

J. Knight

University of Virginia

20 of 22

il

-
.

{/V/ A DEPARTMENT OF COMPUTER SCIENCE

[

RELATIVE PERFORMANCE

RETRY BLOCK

M [h [k L _
LU L
1 2 3 1 2 3
Fault 6.2 Fault 7.1
b q r
0 _, —I 1
1 2 3
Fault 9.1
J. Knight
University of Virginia
21 of 22

)

M) [JV A DEPARTMENT OF COMPUTERSCIENCE

4 ‘ O

CONCLUSIONS

e Data Diversity Is Inexpensive
— Single Implementation

— Minor Costs Associated With Re-
Expression And Error Detection

® Data Diversity Works
— Empirical Study Showed:
e Some Faults Tolerated Very Well
e Some Faults Tolerated Not So Well

o Performance Widely Varied

e Data Diversity Not Universally Applicable
— Some Data Cannot Be Re-Expressed

— Many Control Systems Read Noisy And
Inaccurate Sensors, Data Diversity
Should Work Well

_ /

J. Knight
University of Virginia
22 of 22

Self-Checking Software*

Sung D. Cha
Nancy G. Leveson John C. Knight
Timothy J. Shimeall
Dept. of Information & Computer Science Dept. of Computer Science
University of California, Irvine University of Virginia
Irvine, CA 92717 Charlottesville, VA 22903
Abstract

This paper presents the results of an empirical study of error detection using
self-checks. The goal of this study was not just to obtain quantitative results
but to learn more about such checks and how they might best be implemented.
This information may result in better methods for formulating checks, making
them easier to write and more effective. The analysis of the checks revealed that
there are great differences in the ability of individual programmers to design
effective checks. We found that some checks that might have been effective
failed to detect a fault because they were badly placed, and there were numerous
instances of checks signaling non-existent errors. In general, specification-based
checks alone were not as effective as combining them with code-based checks.

Goals of the Study

The ability to produce ultra-reliable computer systems in such industries as aerospace and
defense is becoming increasingly important. Although research in hardware design has yielded
computer architectures of potentially very high reliability, the state of the art in software
development is not as advanced. Current software engineering methods cannot guaré.ntee
ultra-high software reliability, and formal verification and synthesis are not able to deal with

software of the required size and complexity.

It has been proposed that fault tolerance techniques be used to make the software func-

tion correctly despite the presence of faults in the code. It is hoped that this will provide the

*This work was supported in part by NASA under grant numbers NAG-1-511, and NAG-1-668, in part by

NSF grant DCR 8406532, and in part by MICRO grants cofunded by the state of California, Hughes Aircraft

Co., and TRW.
N. Leveson
University of California, Irvine
I of 14

required reliability, although empirical evidence is meager. The few real projects that have
attempted to apply software fault tolerance have used ad hoc methods, and little or no data

was collected on the effectiveness of the techniques.

We are engaged in a long-term effort to evaluate and improve software fault tolerance
techniques and to determine when and how they should be applied. Our first experiment,
which was reported at a previous Goddard Software Engineering Workshop, tested the funda-
mental assumption that software versions that are developed independently will fail in a sta-
tistically independent manner [Knight and Leveson (1086a)]. A conclusion of this experiment
is that models of reliability improvement must include the possibility of correlated failure pat-
terns among the N versions. Using the programs generated for this experiment, we have been
able to demonstrate some reliability improvement using 3-version voting although it was not
as great as might be necessary to achieve ultra-high reliability in practical systems. We have
also examined in detail the faults that caused correlated failures to determine their common
characteristics and to determine if it appeared that changes in the way N-version software is

developed might help to minimize them [Brilliant, Knight, and Leveson (1986b)].

Because of the limited success of the voting technique, we have attempted to examine
alternatives. The primary alternative to voting is acceptance tests or other types of self-tests
embedded in the software. A recent experiment by Anderson et. al. (1985) used recovery
blocks, but few conclusions were reached about acceptance tests outside of the fact that they
are hard to write. Information about self-checking software is important not only for fault-
tolerance, but also for more general software engineering techniques since acceptance tests are
a subset of the more general run-time assertion used in exception-handling and testing.
Although acceptance tests, assertions, and exception handling mechanisms have been included

in programming languages and systems, little information is available about the difficulty of
N. Leveson
University of California, Irvine
2 of 14

writing effective self-checks in software. More information about the use of self-checks to
detect software errors might result in better methods for formulating cehcks, making them
easier to write and more effective. Our goal in this study was not merely to provide numerical
data, but to learn more about such checks and how they might best be implemented. The

next section describes the design of the study. Following this, the results are described and

conclusions drawn.

Experimental Design

This study uses the programs developed for a previous experiment by [Knight and Leve-

son (1986a)]. Twenty-seven versions of a program to read radar data and determine whether

Launch Interceptor Program, or LIP) were prepared from a common specification by graduate
students and seniors at the University of Virginia and the University of California, Irvine.
Extensive efforts were made to ensure that individual students did not cooperate or exchange
information about their program designs during the development phase. The twenty-seven
LIP programs have been analyzed by running one million randomly generated test cases on
each program and locating the individual faults that were detected during the testing pro-

cedure.

In the present study, 8 students from UCI and 16 students from UVA were employed for

a week’s time to instrument the programs with self-checking code in an attempt to detect

errors in the programs. Eight programs were selected from the 27 and each was randomly

assigned to three students (one from UCI and two from UVA). The students were all gradu-

ate students in computer science with an average of 2.35 years of graduate study. Professional

experience ranged from 0 to 9 years with an average of 1.7 years. None of the participants had
N. Leveson

University of California, Irvine
3 of 14

prior knowledge of the LIP program nor were they familiar with the results of the previous
experiment. There was no significant correlation found between a participant’s graduate or

industrial experience and their success at writing self-checks.

Participants were provided with a brief explanation of the study along with an introduc-
tion to writing self-checks. All also read Chapter 5 on Error Detection from a textbook on
fault tolerance [Anderson and Lee (1981)]. The participants were first asked to study the LIP
specification and to write checks using only the specification, the training materials, and any
additional references the participants desired. When they had submitted their initial checks,
they were randomly assigned a program to instrument. The participants were asked to write
checks with and without looking at the code in order to determine if there was a difference in
effectiveness between self-checks designed by a person working from the requirements alone
and those for which the person has access to and information about the program code. On the
one hand, the person working only from the requirements might provide more independence
by not being influenced by the written code. However, it could also be argued that looking at
the code will suggest different and perhaps better self-checks. Because we anticipated that the
process of examining the code might result in the participants detecting faults through code-
reading alone, participants were asked to report any such detected faults but to still attempt

to write a self-check to detect the fault.

The instrumented versions were subjected to an acceptability test (200 randomly gen-
erated test cases) as in the previous experiment. The original versions were known to run
correctly on those data, and we wanted to attempt to remove obvious faults introduced by the
self-checks. If any false alarms were raised (faults reported that did not actually exist) or if
new faults were detected which had been introduced into the program by the instrumentation,
the programs were returned to the participants for correction. Along with the instrumented

N. Leveson

University of California, Irvine
4 of 14

version, participants submitted time sheets, background profile questionnaires, and descrip-

tions of all program faults identified by code reading.

After the instrumented programs had passed the acceptability test, they were executed

using the test cases on which they had failed in the previous experiment along with 20,000 new

randomly-generated test cases to see if new faults might have been detected. Finally, the self-

checks were carefully examined and catalogued as to type of check and effectiveness.

Results

The first task of the experiment participants was to read through the program require-

ments specification and to design self-checks based solely on that specification. These self-

checks were found to fall into four groups based on the general strategy of check used:

[1]

[2]

3]

[4]

Duplication Checks: self-checks that duplicate the functionality of the code and compare
results. Most, but not all, of the self-checks in this group use algorithms different from

the original source code.

Structural Checks: self-checks that verify the proper use of data structures or the proper
semantics of code. Examples include a check which verifies that the exit condition of a
loop is true immediately following the loop and a check that verifies that data values have

not been improperly overwritten.

Reversal Checks: self-checks that reverse the operation performed by the code and then

see if the results are consistent with the input data.

Consistency Checks: self-checks that determine if the results have certain properties.
Examples of consistency checks include range checking, arithmetic exception checking,

and type checking.

N. Leveson
University of California, Irvine
5 of 14

Table 1 shows the classification of the self-checks designed from the specification. Note that
the largest number of checks written were consistency checks followed by duplication checks.
Performance is discussed later, but Tables 3 and 5 show that a total of 33 self-checks were
completely or partially effective in detecting errors. Of these 33 effective checks, 4 (or 12%)
were formulated by the participants after looking at the requirements specification only. The
remaining 88% of the effective checks were designed after the the participants had looked at
the code. It has been suggested that acceptance tests in the recovery block structure must be
based on the specification alone [Anderson and Lee (1981)]. Our results indicate that
effectiveness of the self-checking can be improved when the specification-based (acceptance
test) checks are refined and expanded by source code reading and a thorough and systematic
instrumentation of the program. It appears that it is very useful for the instrumentor to actu-

ally see the code when writing self-checks.

Type of checks used Total
Duplication | Structural | Reversal | Consistency | Other*
Total 149 23 76 218 11 477

Table 1: Specification-Based Self-Checks

The second task of the participants was to instrument a particular program with self-
checks. No limitations were placed on the participants as to how much time could be spent
(although they were paid only for a 40 hour week which effectively set an upper boundt) or
how much code could be added. The amount of time reported spent ranged from 19.5 hours
to 52 hours. There was no statistically significant relationship between the number of hours
claimed to have been spent (as reported on the timesheets) by the participants and whether or

not they detected any program faults.

*

t

These self-checks were too vague to be classified
Several reported spending more than 40 hours on the project.

N. Leveson
University of California, Irvine
6 of 14

Table 2 describes the change in length in each program during instrumentatationt. Note
that there is a great variation in the amount of code added, ranging from 48 lines to 835 lines.
Participants added an average of 37 self-checks, varying from 11 to 97. Despite this variation,
there was no correlation between the total number of checks inserted by a participant and the
number of those checks that were effective at finding faults. That is, more checks did not

necessarily mean better fault detection.

Version Number of Lines Increase
|original a b c la b ¢
3 757 909 1152 805|152 395 48
6 643 859 887 700216 244 57

8 600 1046 1356 824]446 756 224
12 573 1121 696 806548 123 233
14 605 905 1342 T712]300 737 107

20 533 611 1368 596| 78 835 63
23 349 1065 417 544|716 68 195
25 906 1644 1016 1022738 110 116

Table 2: Lines of Code Added During Instrumentation

Table 3 classifies the program-based self-checks in terms of strategy used and
effectiveness. Checks are classified as effective if they correctly report the presence of an error
during execution. Two partially effective checks by participant 23a that detect an error most
(but not all) of the time are counted as eflective. Ineffective checks are those that do not sig-
nal an error when one occurs during run-time in the module being checked. False alarms sig-
nal an error when no error is present. Finally, the effectiveness is classified as unknown if the

check does not signal an error and the module being tested is correct.

TIn order to aid the reader in referring to previously published descriptions of the faults
found in the original LIP programs, the programs are referred to in this paper by the
numbers previously assigned in the original experiment. A single letter suffix is used (a,
b, or ¢) to distinguish between the three independent instrumentations of the programs.

N. Leveson
University of California, Irvine
7 of 14

Effectives |Ineffectives |False Alarms| Unknowns [Total
DSRCIDSRCIDS RCID S R C

Total|{19 0 0 14{10 28 0 505 2 0 3 |73 168 31 462| 865
Table 3: Self-Check Classification

L

It can be seen from Table 3 that duplication and consistency checks were about equally
effective in detecting faults although more consistency checks were used. For these programs,
structural and reversal checks were not effective, but this may have been influenced by the
types of faults that were actually in the programs. We examined the ineffective self-checks
(checks on code that contained faults but did not detect the faults) in detail. They appear to

fail due to one or more of the following reasons:

® Wrong self-check strategy — the participant used a type of self-check inappropriate to
detect the fault present in the code. For example, use of a structural check when the

fault was an inadvertent substitution of one variable for another in an expression.

® Wrong check placement — the participant placed the self-check in a location where not all

results were checked, and the fault was on a different path.

® Use of the original faulty code in the self-check — the participant falsely assumed a portion

of the code was correct and called that code as part of the self-check.

It should be noted that the placement of the checks may be as crucial as the content. This

has important implications for future research in this area and for the use of self-checking in

real applications.

It should not be assumed that a false alarm involved a fault in the self-checks. In fact,
there were cases where an error message was printed even though both the self-check and the
original code were correct. This occurred when the self-check made a calculation using a

different algorithm than the original code. Because of the inaccuracies introduced by finite

N. Leveson

University of California, Irvine
8 of 14

precision arithmetic compounded by the difference in order of operations, the self-check algo-

rithm sometimes produced a result which differed from the original by more than the allowed

tolerance. Increasing the tolerance does not necessarily solve this problem in a desirable way.

This same problem occurred in our previous experiment and is discussed in detail elsewhere

[Brilliant, Knight, and Leveson (1986a)].

Some faults were detected while the participants were reading the code. The numbers in

Table 4 refer to the numbering used to identify the individual faults in [Brilliant, Knight, and

Leveson (1986b)]. Three faults were reported that actually were not faults; the participant

misunderstood the code.

Version Fault
3a 3.3
6a 6.1
6.2
12¢ 12.1
20b 20.2
20¢ 20.2
25.3

Table 4: Faults Detected Through Code-Reading

Table 5 summarizes the detected faults by how they were found. 20% of the detected

faults were detected by specification-based checks, 40% by code-reading, and 40% by code-

based checks.

case, which was not true of the specification-based or code-reading faults.

Note that often more than one check detected the same fault in the code-based

Due To
Object Total
Jec Spec-based Design | Code Reading | Code-based Design °
Faults Detected 4 8 8 20
Effective Checks 4 8 21 33

Table 5: Fault Detection Classified by Instrumentation Technique

N. Leveson

University of California, Irvine

9 of 14

One final way of looking at the results of this study is to consider the number of faults

detected and introduced by the participants. Table 7 shows this information.

Newly Added Faults

Already Known Faults Other Faults

Present Detected Detected Incorrect NoAnswer

3a
3b 4
3c
6a
6b 3
6¢c
8a
8b 2
8¢
12a
12b 2
12¢
14a
14b 2
14c
20a
20b 2
| 20c
23a
23b 2
| 23c
25a
25b 3
| 25¢
total 20

(=

O NI CON|MHROIOCOCOMOMRIOCONIOCON|C O
COHIOCOCOIOHFO OO | OKII OO0 O HIOO
COO IO WIONHHIOCOOIHF OO |WHOI|IOO|IOOO
OHOICOHHIOCOCOIOR O IHFNOIOOO OO HIOOOQ

[y
NN
»
—t
[3%
—
o

Table 6: Summary of Fault Detection
This data makes very clear the difficulty of writing effective self-checks. Of 20 previously

known faults in the programs, only 11 were detected (the 14 detected known faults in Table 6
include some multiple detections of the same fault) and only 3 of the 11 detected faults were
found by more than one of the three participants instrumenting the same program. It should
be noted, however, that the versions used in the experiment are highly reliable (an average

99.9165% success rate on the previous one million case testing), and many of the faults are

N. Leveson
University of California, Irvine
10 of 14

quite subtle. We could find no particular types of faults that were easier to detect than others.

Individual differences in ability appear to be important here.

One rather unusual case occurred. One of the new faults detected by participant 8c was
detected quite by accident. There is a previously unknown fault in the program. However,
the checking code contains the same fault. An error message is printed because the self-check
code uses a different algorithm than the original, and finite precision problems cause the self-
check to differ from the original by more than the allowed real-number tolerance. We
discovered the new fault while evaluating the error messages printed, but it was entirely by
chance. This same thing occurred in modules which did not contain a fault, and in that case
the error message was classified as a false alarm (as discussed above). Our decision was to
classify the self-check as effective because it does signal a fault when a fault does exist, but this

is a subjective choice.

It is very interesting that the self-checks detected 6 faults not previously detected by com-
parison of twenty-seven versions of the program with a gold version over a million test cases.
After closer examination of the newly discovered faults, we found that one of the reasons they
were not uncovered previously is that the strategy of test case selection did not include those
test cases that would have revealed the faults. This points out the well-known difficulty in
selecting appropriate test cases. The fact that the self-checks uncovered new faults implies
that they may have some advantages over voting alone. The faults were not detected during
the previous testing because the voting procedure could compare only the final result of com-
putations (since different algorithms were used), whereas the self-check verified the validity of
intermediate results as well. For the few cases in which it arose, the faults did not affect the
correctness of the final output. However, under different circumstances the final output would

have been incorrect. N. Leveson

University of California, Irvine
11 of 14

Although new faults were introduced through the self-checks, this is not very surprising.
It is known that changing someone else’s program is difficult and whenever new code is added
to a program there is a possibility of introducing faults. All software fault tolerance methods
involve adding additional code of one kind or another to the basic application program. The
major causes of the new faults were an algorithmic error in a redundant computation, use of
an uninitialized variable during instrumentation, logic error, use of Heron’s formula, infinite
loops added in instrumentation, out of bounds array reference, etc. The use of uninitialized
variables occurred due to incomplete program instrumentation. A participant would declare a
temporary variable to hold an intermediate value during the computation, but fail to assign a
value on some path through the computation. A rigorous acceptability test may have detected

these faults earlier, especially those that cause an abnormal termination of the program.

Conclusions

This study was not designed to provide definitive answers to any particular questions, but
instead to attempt to determine what the important questions are. This should guide us and
others in the design of further experiments, in the evaluation of current proposals, and in the
design of new methodologies. Some important questions arise as a result of this study that

need to be answered such as:

[1] There appear to be great differences in individual ability to design effective self-checks.
This suggests that more training or experience might be helpful. Our participants had lit-
tle of either although all were familiar with the use of pre- and post-conditions and asser-
tions to formally verify programs. The data suggests that it might also be interesting to

investigate the use of teams to instrument code.

[2] The programs were instrumented with self-checks in our study by participants who did

N. Leveson
University of California
12 of 14

[4]

[5]

not write the original code. It would be interesting to compare this with instrumentation
by the original programmer. A reasonable argument could be made both ways. The ori-
ginal programmer, who presumably understands the code better, might introduce fewer
new faults and might be better able to place the checks. On the other hand, separate
instrumentors might be more likely to detect faults since they provide a new view of the

problem. More comparative data is needed here.

Placement of self-checks appeared to cause problems. Some checks that might have been
effective failed to detect a fault because they were badly placed. This implies either a
need for better decision-making and rules for placing checks or perhaps different software

design techniques to make placement easier.

Specification-based checks alone were not as effective as using them together with code-
based checks. This implies that fault tolerance may be enhanced if the alternate blocks in
a recovery block scheme, for example, are also augmented with self-checks along with the
usual acceptance test. This may also apply to pure voting schemes such as N-version pro-
gramming. A combination of fault-tolerance techniques may be more effective than any

one alone. More information is needed on how best to integrate these different proposals.

The process of writing self-checks is obviously difficult. However, there may be ways to
provide help with this process. For example, Leveson and Shimeall (1983) suggest that
safety analysis using software fault trees [Leveson and Harvey (1983)] can be used to
determine the content and the placement of the most important self-checks. Other types
of application or program analysis may also be of assistance. Finally, empirical data about

common fault types may be important in learning how to instrument code with self-

checks.

N. Leveson
University of California, Irvine
13 of 14

Many promising research topics, empirical studies, and experiments are suggested by the

results of this study that may lead to better procedures for software error detection.

Acknowledgements

The authors are pleased to acknowledge the efforts of the experiment participants: David
W. Aha, Tom Bair, Jack Beusmans, Bryan Catron, Harry S. Delugach, Siamak Emadi, Lori
Fitch, W. Andrew Frye, Joe Gresh, Randy Jones, James R. Kipps, Faith Leifman, Costa Liva-
das, Jerry Marco, David A. Montuori, John Palesis, Nancy Pomicter, Mary Theresa Roberson,
Karen Ruhleder, Brenda Gates Spielman, Yellamraju Venkata Srinivas, Tim Strayer, Gerald

Reed Taylor III, and Raymond R. Wagner, Jr.

REFERENCES

[1] T. Anderson, P.A. Barrett, D.N. Halliwell, and M.R. Moulding, “An Evaluation of
Software Fault Tolerance in a Practical System”, Digest of Papers FTCS-15: Fifteenth
Annual Symposium on Fault-Tolerant Computing, pp. 140-145, June 1985.

[2] T. Anderson, and P.A. Lee, Fault Tolerance: Principles and Practice Englewood Cliffs,
NJ, Prentice-Hall Intl., 1981.

[6] S.S. Brilliant, J.C. Knight, and N.G. Leveson, “The Consistent Comparison Problem in
N-Version Software”, submitted for publication, 1986a.

[7] S.S. Brilliant, J.C. Knight, and N.G. Leveson, “Analysis of Faults in an N-Version
Software Experiment’’, submitted for publication, 1986b.

[13] J.C. Knight and N.G. Leveson, “An Experimental Evaluation of the Assumption of
Independence in Multi-Version Programming”, IEEE Transaction on Software Engineer-
ing, pp. 96-109, January 1986a.

[15] N.G. Leveson, and P.R. Harvey, “Analyzing Software Safety”, IEEE Transactions on
So ftware Engineering, Vol. SE-9, No. 5, pp 569-579, 1983.

[16] N.G. Leveson, and T.J. Shimeall, “Safety Assertions for Process-Control Systems”’, Digest
of Papers FTCS-13: Thirteenth Annual Symposium on Fault-Tolerant Computing, pp

236-240, June 1983.
N. Leveson

University of California, Irvine
14 of 14

AN EXPLERIMENTAL COMPARISON OF FORTRAN AND

ADA PROGRAM RELIABILITY

Amrit L. Goel!
Joseph Cavano?
F. Youwakim Farhat!

Tom Little!

Presented at the Eleventh NASA/SEL Annual
Software Engineering Workshop NASA/GSFC
Greenbelt, Maryland

December 3, 1986

!Syracuse University, Syracuse, NY 13244
ZRADC, GAFB, Rome, NY 13441
This work was supported in part by SCEEE and

the Rome Air Development Center, GAFB

A. Goel
Syracuse University
1 of 26

This report documents an experiment investigating the ecffect
of Fortran and Ada languages on program reliability. The experi-
mental design employed here was a 23 full factorial design, i.e.,
a design in three variables, each at two levels. The variables
and their levels were language (Fortran and Ada), programmer
experience (intermediate and advanced) and application type
(scientific and text processing). Due to experimental and resource
constraints, this study concentrated on a 22 factorial desiegn in
two variables, language and programmer experience. Some of the
experimental points in this design were replicated to determine
precision of the effect of language and experience on program
reliability. The scientific problem used here was the Launch
Interceptor Prooram (1LIP), a simplec but realistic, anti-missile
system which has been used elsewhere in connection with software
testing and fault-tolerance research. The second problem used was
the well-known text-formatting program. The programmers were
graduate students in computer engincering with varying degrees of
experience in programming languages.

The programmers developed their own designs from given
specifications and did independent compilations and unit testing.
Data on these activities were collected for comparison purposes.
The function testing of each LIP version was done after removing
errors detected during unit testing and compilation. Tifty-four
test cascs for this purpose were developed manually using a hybrid
of structure-dependent and structurc-independent testing techniques.

A. Goel

Syracuse University
2 of 26

In this paper we present the results of an experiment
investigating the effect of Fortran and Ada languages on program
reliability. The experimental design employed here was a 22
full factorial design, i.e., a design in two variables, each at
two levels. The variables and their levels were language (Fortran
and Ada) and programmer experience (intermediate and advanced).
Some of the experimental points in this design were replicated
to determine precision of the effects on program reliability.
The scientific problem used here was the Launch Interceptor
Program (LIP), a simple but realistic, anti-missile system which
has been used elsewhere in connection with software testing and
fault-tolerance research. The second problem used was the well-
known text-formatting program. The programmers were graduate
students in computer engineering with varying degrees of
experience in programming languages.

The programmers developed their own designs from given
specifications and did independent compilations and unit testing.
Data on these activities were collected for comparison purposes.
The function testing of each LIP version was done after removing
errors detected during unit testing and compilation. Fifty-four
test cases for this purpose were developed manually using a

hybrid of Structure-dependent and structure-independent testing

techniques.

A. Goel
Syracuse University
3 of 26

Since it was not feasible to determine the oracle for the LIP
programs, a variation of majority voting technique was used to
determine correct values. Specifically, elements of the conditions
met vector, the CMVE's, were compared from each version and the
majority of five was taken to be the correct values. This technique
proved to be very useful and efficient in testing and debugging.
Also, this method was successful in providing a very high
structural and functional coverage of the programs.

Errors revealed by the above fifty-four test cases were
removed one-at-a-time and the remaining test cases were run on
these incrementally corrected versions. The plots of cumulative
error symptoms versus test case number seem to follow homogenous
Poisson processes in each case and provide some useful insights
into the error symptom occurrence behavior.

Operational testing of the LIP programs was done after
removing errors found during function testing using three sets
of test cases. The first set of 120 tests was developed manually
using the same hybrid techniques as for function testing. The
other two sets of 100 and 1000 tests were based on random testing.

Data on errors were collected during development and unit
testing, function testing and operational testing. This included
numbers, causes and types of error and times taken to isolate and
fix them. Reliability comparison between Ada and Fortran programs
were based on the total number of errors, as well as on errors

found during development and functional testing, functional and

A. Goel
Syracuse University
4 of 26

operational testing and operational testing. Some comparisons
were also based on error density, the number of errors per 100
non-comment lines of code. Further analyses were based on
error causes (design, coding and programmer) as well as on
error types (control, data and interface). Following are the
main results of these analyses.,

The number of errors in the Ada programs were about 70%
less than those in Fortran when comparisons were based on errors
found during all phases. If errors during development and unit
testing were excluded, i.e., if only functional and operational
testing data were considered, the Ada programs had about 78%
less errors. Similar differences were found for data based on
error causes and error types.

Using error density during development and functional testing
as a measure, the average difference between Ada and Fortran
programs was 5.7 errors per 100 non-comment lines with a standard
deviation of 1.35 units. The effect of programmers' experience
was to reduce error density by 2.1 with a standard deviation of
1.35 units. If data during functional and operational testing
alone is considered, then the Ada programs had 3.20 less errors
per 100 non-comment lines. The effect of experience during these

phases was not statistically significant.

A. Goel
Syracuse University
5 of 26

Summarized above are the most important results of this
study. ELven though they are based primarily on implementations
of only one problem, they do indicate that there is a statistically
significant evidence in support of higher reliability of Ada
programs. The extent of this difference, however, is likely to
vary from one application to another as well as across different

development environments.

A. Goel
Syracuse University
6 of 26

THE VIEWGRAPH MATERIALS
FOR THE

A. GOEL PRESENTATION FOLLOW

STUDY OBJECTIVE

Asscss the effect of Fortran and Ada languages
on Program Reliability in a controlled Experimental
Environment

Specifically, determine the number of errors
detected during development and unit testing,
function testing, and operational testing

Also, analyze detected errors for causes,
symptoms, types, etc.

The observed numbers are used to assess the
relative reliability of the programs developed
in these languages

A. Goel
Syracuse University
7 of 26

EXPERIMENTAL DESIGN

A 2° FULL FACTORIAL DESIGN

FACTORS LEVELS

Language Fortran

Programmer Intermediate
Experience

Application Scientific

Type

ADA

Advanced

Text Processing

A. Goel
Syracuse University
8 of 26

A 23 FULL FACTORIAL DESIGN

)

J-b
%

Advariced 3
b

Progromimer

7
intermedicte® (1

Fortran =
l.anguage

A. Goel
Syracuse University
9 of 26

LAUNCH INTERCEPTOR PROGRAM

Simple, but realistic anti-missile system.
Studied elsewhere* in connection with fault-
tolerant software research.

Program reads inputs which represent radar
reflections, checks whether some prespecified
conditions are met and determines if the
reflections come from an object that is a

threat and if yes, signals a launch decision.

*

Knight and Leveson, IEEE-TSE, January 1986.

A. Goel
Syracuse University
10 of 26

SCHEMATIC OF LIP

INPUT

e NUM PTS (1)

o X, Y (4-200)

OUTPUT

e PUM (225)

e CMV (15)

e PARS (19)

LCM (225)

PUM (15)

(264-460 Values)

e FUV (15)

e Launch (1)

(256 Values)

A. Goel
Syracuse University
IT of 26

EXAMPLE

Launch Intercepter Conditions

LIC 1: There exists at least one set of two
consecutive data points that are a
distance greater than LENGTHl apart

LIC 11: There exists at least one set of three
data points separated by exactly E PTS
and F PTS...that are the vertices of a
triangle with area greater than AREAl

A. Goel
Syracuse University
12 of 26

LIP
Specifications

1

Top Level Design

A W

Detailed Designs Detailed Designs
for Fortran for Ada _
1@ Design and
Code metrics
Fortran Programs Ada Programs
| 2 3 | | 2 3)
‘ , ® Development and
Unit Testing Unit Testing gl L
) — Effort Data
\ /] ® Test Metrics
Functi : ® Test Effqrt Data
o unctional Testing e Debugging Data
b
® Error Data
- Numbers
’ —-Causes
-Types
® Operational Testing
A. Goel
Syracuse University
13 of 26

EXPERIMENTAL APPROACH: LIP

Developed six versions in Fortran and ADA
- Two each by intermediate programmers

- One each by advanced programmers

Collected data on errors and effort during

development.

Unit testing - some structure based, some
function based.
LIP testing - 54 test cases derived from

specifications and ADA Code.

Further testing on 'corrected' versions
(120 test cases).
Random testing on 'corrected' versions

(100 + 1000 test cases).

Analsis of errors: numbers, causes, type,

to assess reliability.

etc.

A. Goel
Syracuse University
14 of 26

AT

Some Mctrics for the LIP Programs

Fl F2 Al A2 F3 A3
Source Lines 696 446 691 624 526 851
Non-Comment 550 442 632 498 439 600
Lines
Executable 212 246 214 184 174 137
Statements
Packages ® * 6 4 * 3
Subprograms 21 19 30 23 28 29
Procedures * * 4 4 * 1
Subroutines 13 19 * * 28 *
Tasks * * 15 15 * 0
Functions 8 0 11 4 0 28
Exceptions ® * 2 0 * 2
Raise * * 0 0 * 3
A. Goel
Syracuse University
15 of 26

RELIABILITY ASSESSMENT

. Based on an analysis of errors found

during development and testing.
Errors analyzed by

- Numbers
- Causes
- Symptoms

- Types

A. Goel
Syracuse University
16 of 26

TRy

SUMMARY OF NUMBER OF LRRORS

FOUND DURING VARIOUS PHASES

FL F2 AL A2 F3 A3
Dev. § Unit 24 28 8 7 10 4
Testing
LIP 16 18 5 4 15 4
Testing
Subtotal 40 46 13 11 25 8
oT
120 1C 1* 1 0 0 1 1
*
100 Random 2 0 1 0 1 0
1000 Random 3* 0 0 0 0 0
Total 4 1 1 0 2 0
oT
Total 44 47 14 11 27 8
(A1l Phases)
(* one common error)
A. Goel

Syracuse University
17 of 26

TOTAL ERRORS AND ERROR DENSITIES

INTERMEDIATE

Average
Number

Average
Density

ADVANCED

Number

Density

27.

.7

A % DIFFERENCE
12.5 72.5
2.1 76.9
8.0 70.4
1.3 77.2
A. Goel
Syracuse University
18 of 26

ALl

19 of 26

L2
oT
A. Goel
Syracuse University

FT

-
o
Q
|] | | ;
o o) o O 0 o
0 < M ~N
N
| = 5
™
[
W
] | B | 1 =

8 ¢ <« < @ o
SHOYY3 40 'ON 3AILVINKWND

Syracuse University

A. Goel
20 of 26

FL3
oT

FT

DUT

w O =

N
SHOYY3 JO H3I8BWNN

e

LIP AND

OPERATIONAL TESTING

INTERMEDIATE

Average
Number

Average
Density

Density

4.07

17.0

3.88

0.

0.

88

67

% DIFFERENCE
74.4
78.4
76.5
82.7
A. Goel

Syracuse University
21 of 26

ERROR CLASSIFICATION

Phase

Cause

Symptoms :

Type

IAY

Design, Coding
Previous fix,
Programmer error

Infinte loop

Computation, Interface

Basili & Perricone, Selby

A. Goel
Syracuse University
22 of 26

DESIGN AND CODING ERRORS

INTERMEDIATE F A % DIFFERENCE
Design 13.5 5.0 62.9
Coding 29.5 7.0 76.3
ADVANCED
Design 10.0 3.0 70.0
Coding 15.0 5.0 66.7
A. Goel
Syracuse University
23 of 26

ERROR CAUSES:

LIP TESTING

FL P2 AL AZ E3 A3

Pro-

grammer

Error 4 10 0 1 9 0
Previous

Fix 2 o o O 2 0
Incorrect

Imple-

entation 6 4 2 3 2 :

of Specs.

Clerical 3 4 2 0 2 1
Program. 1 0 0 0 0 0

LLanguage

Misunder-

standing

Total 16 18 4 4 15 4

A. Goel

Syracuse University
24 of 26

ERROR SYMPTOMS :

LIP TESTING

F1 P2 oA A2 F3 A3
Overflow/

Underflow 1 4 0 1 0 0
Infinite

Loop 0 0 0 1 0 0
Wrong

Result 15 14 5 2 15 4
Total 16 18 15 4 15 4

A. Goel

Syracuse University
25 of 26

ERROR TYPES:

LIP TESTING

r1 2 Al A2 F3 A3
Computation 4 6 2 1 5 2
Control §) 4 0 2 4 0
Interface 5 1 0 0 1 2
Data 1 7 3 1 5 0
Total 16 18 5 4 15 4
A. Goel

Syracuse University
26 of 26

APPENDIX A

ATTENDEES OF THE 1986 SOFTWARE ENGINEERING WORKSHOP

AGRESTI, BILL W.
ALDRIDGE, JACK
ANDERSON, JOYCE
ANDREW, DON A.
ANTALEK, RICHARD W.
ARMSTRONG, MARY
ARNOLD, ROBERT
ARTHUR, JAMES
ASKEW, MICHAEL B.
AYERS, EVERETT
BAILEY, JOHN
BAILIN, SID

BARNES, BILL P.
BARRETT, CURTISS C.
BASILI, VIC
BIGWOOD, DOUGLAS W.
BILLINGS, DIANE
BLIZZARD, MICHAEL
BLUM, BRUCE
BOEHM, BARRY
BOND, JACK

BOND, LISA T.

BOON, DAVE

BOOTH, ERIC
BRANDT, KIM
BREDESON, MIMI
BROPHY, CAROLYN
BROWN, KEITH L.
BROWN, ROBERT G.
BUCHANAN, GEORGE A.
BUELL, JOHN
BURLEY, RICK

CAIN, BETTY
CALLENDER, DAVID
CAPRIOTTI, DAVID
CARD, DAVE
CARLSON, JOHN P.
CARLSON, ROBERT
CARRIO, MIGUEL
CARSON, JOHN H.
CARTER, HAROLD
CARY, JOHN
CHASSON, MARGARET C.
CHEN, CHI-FANG
CHENOWETH, HALSEY B.
CHEUVRONT, STEVE
CHMURA, LOUIS J.
CHU, RICHARD
CHUNG, ANDREW
CHURCH, VIC

CISNEY, LEE

CLAPP, JUDITH A.

COMPUTER SCIENCES CORPORATION
McDONNELL-DOUGLAS ASTRONAUTICS CO.
COMARCO, INC.

FINANCIAL MANAGEMENT SERVICE
SOCIAL SECURITY ADMINISTRATION

T RESEARCH INSTITUTE

MITRE CORP.

VIRGINIA TECH UNIV.

GTE CORPORATION

ARINC RESEARCH CORP.

CTA

NASA/GSFC

NASA/GSFC

UNIVERSITY OF MARYLAND

U.S. DEPT. OF AGRICULTURE
FEDERAL COMMUNICATIONS COMMISSION
LOCKHEED EMSCO (PB-9)

APPLIED PHYSICS LAB

TRW

U.S. DEPT. OF DEFENSE

NAVAL SURFACE WEAPONS CENTER
COMPUTER SCIENCES CORP.
COMPUTER SCIENCES CORP.
NASA/GSFC

SPACE TELESCOPE SCIENCE INST.
UNIVERSITY OF MARYLAND

IBM CORP.

IITRI

COMPUTER SCIENCES CORP.
NASA/GSFC

DEPT. OF TREASURY

NASA/JSC

BURROUGHS CORP.

COMPUTER SCIENCES CORP.

OAO CORP.

NASA/ARC

TELEDYNE BROWN ENGINEERING
GEORGE WASHINGTON UNIVERSITY
MARTIN MARIETTA CORP.

GEORGE WASHINGTON UNIVERSITY
IBM CORP.

WESTINGHOUSE ELECTRIC COMPANY
COMPUTER SCIENCES CORP.

NAVAL RESEARCH LAB.

MARTIN MARIETTA AEROSPACE
FAA TECHNICAL CENTER
COMPUTER SCIENCES CORPORATION
NASA/GSFC

THE MITRE CORPORATION

A-1

CLARK, DAVID
CLEMENTS, PAUL
COHEN, VIC
COLLINS, MICHAEL D.
COOK, JOHN F.
COOK, LAURA
CORNEL, ROGER
COTNOIR, DONNA
COUCHOUD, CARL
CROTEAU, LEE
CYPRYCH, GENE
DAILY, JACK
DAVIS, ANN
DECKER, WILLIAM
DELONG, SUZANNE

DEMEESTER, RICHARD H.

DEVANE, ARYNE
DICKSON, CHARLES H.
DISKIN, DAVID
DONNELLY, LAURIE
DOUGLAS, FRANK J.
DUVALL, LORRAINE
DYMOND, KEN
EBERHART, H. O.
ELLIOTT, DEAN F.
ELLIS, WALTER
ELOVITZ, HONEY S.
ESKER, LINDA
EVANGELIST, MICHAEL
FABISZAK, CATHY
FANG, Al

FATH, RICHARD
FINDLEE, JOHN
FISHTAHLER, LARRY
FORMANAK, KATHLEEN
FORSYTHE, RON
FRAHM, MARY 1J.
FRANKEL, SHEILA
FRANKLIN, JUDE
FREUND, AL
FRIEDMANN, DAN
GAFFNEY, JOHN
GARRICK, JOE
GERSTNER, DIETWALD
GETTIER, CHARLES
GIFFIN, GEOFF
GODFREY, SALLY
GOEDDEKE, VINCENT
GOEL, AMRIT

GOGIA, B. K.
GOLDBERG, ALEXANDER
GOLDEN, JOHN R.
GORDON, LLAYDON
GORDON, MARC D.

SYSTEMS DEVELOPMENT CORP.
NAVAL RESEARCH LAB

EPA

MARTIN MARIETTA CORP.
NASA/GSFC

GSC

U.S. EPA

COMPUTER SCIENCES CORP.
SOCIAL SECURITY ADMINISTRATION
NYMA

COMPUTER SCIENCES CORP.
NAVAL RESEARCH LAB
COMPUTER SCIENCES CORP.
COMPUTER SCIENCES CORP.
COMPUTER SCIENCES CORP.
GENERAL ELECTRIC

FCC
USDA-ARS-ASRI-HYDROLOGY
U.S. CENSUS BUREAU
LOCKHEED

PROFESSIONAL SOFTWARE SERVICES

DUVALL COMPUTER TECHNOLOGIES, INC.

NATIONAL BUREAU OF STANDARDS

NASA/GSFC

IBM/FEDERAL SYSTEM DIVISION
SOFTWARE A & E

COMPUTER SCIENCES CORP.

MCC

NASA/GSFC

NASA/HQ

FCC AMD-IM

DEPT. OF TREASURY

COMPUTER SCIENCES CORP.
MARTIN MARIETTA-ATC DIVISION
NASA/WALLOPS FLIGHT FACILITY

NATIONAL BUREAU OF STANDARDS
PRC/GIS
ALLEN BRADELY CO.

IBM CORPORATION-FSD
NASA/GSFC

NASA/HQ

IIT RESEARCH INSTITUTE

JET PROPULSION LAB
NASA/GSFC

NASA/MARSHALL SPACE FLIGHT CENTER
SYRACUSE UNIVERSITY
MARTIN MARIETTA AEROSPACE
MARTIN MARIETTA CORP.
EASTMAN KODAK CO.

CSC

MCI CORP.

GREEN, DANIEL HITSG/GAIO

GREEN, SCOTT NASA/GSFC

GREEN, STAN IIT RESEARCH INSTITUTE
GREENBERG, DIANA U.S. EPA

GREGOR, ROBERT M. SOFTWARE A & E
HALTERMAN, KAREN OAO CORPORATION

HARDY, ROBERT FCC

HEASTY, RICHARD COMPUTER SCIENCES CORP.
HECK, JOANN L. RMS TECHNOLOGIES, INC.
HELLER, GERRY COMPUTER SCIENCES CORP.
HENRY, SALLIE DEPARTMENT OF COMPUTER SCIENCE
HENRY, STEPHANIE NASA/GSFC

HILL, DONNA E. NSwC

HILLMER, DOUG U.S. CENSUS BUREAU
HOLMES. BARBARA GSC NASA/GSFC

HORMBY, TOM JOHN HOPKINS UNIVERSITY
HOUSER, WALTER GSA/IRMSKMPP

HULL, LARRY NASA/GSFC

HUTTMAN, GREG CENSUS BUREAU
HYBERTSON, DUANE LOCKHEED

IDELSON, NORMAN L. APPLIED PHYSICS LAB
ITKIN, DAVID UNIVERSITY OF MARYLAND
JACKSON, GEORGE ACTION

JAWORSKI, ALLAN FORD AEROSPACE

JELETIC, JIM NASA/GSFC

JOESTING, DAVID BENDIX FIELD ENGINEERING CORP.
JONES, CHRISTOPHER T RESEARCH INSTITUTE
JOO, BOK G. UNIVERSITY OF MARYLAND
JORDAN, LEON COMPUTER SCIENCES CORP.
JUN, LINDA NASA/GSFC

KARDATZKE, OWEN NASA/GSFC

KATZ, BETH UNIVERSITY OF MARYLAND
KAUSCH, CHUCK NASA/GSEC

KELLY, KIM R. IBM CORP.

KESSINGER, RICHARD SOFTECH, INC.

KESTER, RUSH GTE GOVERNMENT SYSTEMS
KLENK, JOHN THE MITRE CORPORATION
KLITSCH, GERALD N. COMPUTER SCIENCES CORP.
KNIGHT, JOHN UNIVERSITY OF VIRGINIA
KOWALCHACK, BONNIE UNIVERSITY OF MARYLAND
KOZIUK, FRANK IIT RESEARCH INSTITUTE
KRAMER, NANCY

KRUSZEWSKI, GEORGE KETRON, INC.

KUHN, RICK NATIONAL BUREAU OF STANDARDS
KURIHARA, TOM U.S. DEPT. OF TRANSPORTATION
LABAW, BRUCE NAVAL RESEARCH LAB
LAMAS, NIKI CENSUS BUREAU

LANGDON, WOODY COMPUTER SCIENCES CORP.
LAVALLEE, DAVID FORD AEROSPACE CO.
LAZARO, JOE

LEADER, KAREN HIT RESEARCH INSTITUTE
LEBAIR, BILL NASA/GSEC

LEDBETTER, JOAN M. USDA-OIRM-ATSD

LEVESON, NANCY G. UNIVERSITY OF CALIFORNIA

A-3

LEVINE, DAVID R.

INTERMETRICS, INC.

LEWIS, BLAIR JET PROPULSION LAB
LEWIS, JAMES M. U.S. CENSUS BUREAU

LIN, CHI Y. JPL

LIPHAN, BILL DEPT. OF TREASURY

LIU, JEAN C. COMPUTER SCIENCES CORP.

LIVELY, MARY
LLOYD, MICHAEL R.
LOESH, BOB

LORD, YVONNE
LUCAS, JANICE
LUCAS, TODD R.
LUCZAK, RAY W.
LUPTON, GLENN

U.S. EPA

GENERAL DYNAMICS

SYSTEM TECHNOLOGY INSTITUTE
WESTINGHOUSE DEFENSE & ELEC. CENTER
DEPT. OF TREASURY

COMPUTER SCIENCES CORP.
DIGITAL EQUIPMENT CORP.
LURIE, BRIAN BURROUGHS CORP.

LYTTON, VICTOR H. U.S. DEPT. OF AGRICULTURE
MAJORS, SHEILA CSC

MALAY, ROBERT M.

MARCINIAK, JOHN MARCINIAK & ASSOCIATES
MARTIN, RONALD FCC

McCOMAS, DAVE NASA/GSFC
McENEARNEY, MARK BUREAU OF LABOR STATISTICS
McGARRY. FRANK E. NASA/GSFC

McGARRY, MARY ANN
McGOVERN, DAN
McKENZIE, MERLE
McMAHON, SUE
MEDUIN, JENNIFER B.
MEYER., MARGARET U.S. ARMY OFFICE OF TEST & EVAL. AGENCY
MOHRMAN, CARL C. MARTIN MARIETTA ATC

MONTGOMERY, AL NYMA

MORGAN, CAROL HHT RESEARCH INSTITUTE

MUCKEL, JERRY COMPUTER SCIENCES CORP.

MULCAHY, KEVIN U.S. EPA

MULLEN, PETER MARTIN MARIETTA AEROSPACE

MUNDY, CORNELIA C. NAVAL SURFACE WEAPONS CENTER

MURPHY, CYNTHIA THE MITRE CORP.

MURPHY, ROBERT NASA/GSFC

MYERS, PHILIP I. COMPUTER SCIENCES CORP.

NANCE, RICHARD E. VIRGINIA TECH UNIV.

NAPKORI, JOE SYSTEM DEVELOPMENT CORP.

NELSON, ROBERT NASA/GSFC

NGUYEN, BAO T. HQ USAF/SCTT

NICHOLAS, DAVID A. JET PROPULSION LAB

NOONAN. ROBERT COLLEGE OF WILLIAM AND MARY

NORCIO. TONY F. NAVAL RESEARCH LAB

NORMAN. KENT UNIVERSITY OF MARYLAND

OBREBSKI, KRZYSZTOF PROGRAM RESOURCES, INC.

IITRI-ECAC/U.S. NAVAL STATION
FAA TECHNICAL CENTER

JET PROPULSION LAB

JET PROPULSION LAB
NASA/GSFC

OEl, CHARLES SDC/BURROUGHS
OHLMACHER, JANE SOCIAL SECURITY ADM.
ONG, JOHN NASA/GSFC

OSBORNE, WILMA NATIONAL BUREAU OF STANDARDS
OVERDECK. BETSEY L. COMPUTER SCIENCES CORP.
OWENS. ANTHONY FCC

A-4

- . L 30 W N mmEm M

PAGE, JERRY
PALMER, JAMES G.
PALMQUIST, SALLY
PAPPAS, EUGENE
PARKER, DON
PASSALACQUA, TERESA
PAVNICA, PAUL
PERKINS, DOROTHY
PERKINS, TOBY
PERRY, SANDRA
PETER, MICHAEL
PETERSEN, JANE B.
PIETRAS, JOHN
PIXTON, JERRY
PLETT, MICHAEL E.
PRABHAKAR, N. D.
PRESTON, DAVID
PRINCE, ANDY
PUTNEY, BARBARA
QUANN, EILEEN S.
QUIMBY, KELVIN
QUINN, JEAN T.
RAY, SUSAN
REDWINE, SAM
REED, KARL
RHOADS, TOM
RICHARDSON, EDDIE
ROBBINS, DON
ROBERTS, REBEKAH
ROBINSON, RICHARD
ROHR, JOHN A.
ROMBACH, DIETER H.
ROSENFELD, ROCHELLE
ROWE, DENNIS

ROY, DANIEL M.
RUFFNER, ALAN
SAMII, MINA V.

SANDBORGH, RAYMOND E.

SAWYER, DON M.
SCALISE, GARY
SCHUBERT, KATHY
SCHULTHEISZ, ROBERT
SCHULTZ, DAVID
SCHWARTZ, DAVID
SCIULLO, ED
SCOTT, EUGENE H.
SCOTT, LEIGHTON
SEIDEWITZ, ED
SEMMEL, RALPH
SERAFIN, PAUL
SHEN, VINCENT Y.
SHI, LEON

SHI, XIAOHONG
SHIEK, ELVIRA

COMPUTER SCIENCES CORP.

JOHNS HOPKINS APPLIED PHYSICS LAB
[IT RESEARCH INSTITUTE

IIT RESEARCH INSTITUTE

NASA/GSFC

CENSUS BUREAU

NASA/GSFC

SPERRY CORP.

CSC

GENERAL SERVICES ADMINISTRATION
AUTOMETRIC, INC.

MITRE CORP.

SYSTEMS DEVELOPMENT CORP.
COMPUTER SCIENCES CORP.

AT & T BELL LABORATORIES

[IT RESEARCH INSTITUTE

PRC SYSTEMS SERVICES
NASA/GSFC

COMPUTER SCIENCES CORP.
COMPUTER SCIENCES CORP.
NAVAL RESEARCH LABORATORY
NASA/GSFC

INSTITUTE FOR DEFENSE ANALYSIS
UNIVERSITY OF MARYLAND
COMPUTER SCIENCES CORP.

FCC

NSA/CSS

PRC

THE MITRE CORPORATION

JET PROPULSION LAB

UNIVERSITY OF MARYLAND

GTE GOVERNMENT SYSTEMS
MITRE CORPORATION

CENTURY COMPUTING

MCI CORP.

COMPUTER SCIENCES CORP.
UNISYS CORP.

NASA/GSFC

DEPARTMENT OF TRANSPORTATION
NASA/LERC

WEDLARS III

COMPUTER SCIENCES CORP.
BENDIX

NATIONAL LIBRARY OF MEDICINE
COMPUTER SCIENCES CORPORATION
NSA

NASA/GSFC

APL

EG & G

MCC

COMPUTER SCIENCES CORP.
UNIVERSITY OF MARYLAND
NASA/GSFC

SHOAN, WENDY NASA/GSFC

SMITH, DAN FORD AEROSPACE & COMM. CORP.
SMITH, NANCY NASA/GSFC

SMITH, PAT NSWC

SMITH, PEG M. NASA HEADQUARTERS
SNYDER, GLENN COMPUTER SCIENCES CORP.
SO, MARIA NASA/GSFC

SOLOMON, DAVID COMPUTER SCIENCES CORP.
SOLOWAY, ELLIOT YALE UNIVERSITY
SPAFFORD, EUGENE H. SOFTWARE ENGINEERING RESEARCH CENTER
SPEIZER, HOWARD M. U.S. CENSUS BUREAU
SPENCE, BAILEY COMPUTER SCIENCES CORP.
SPIEGEL, DOUG NASA/GSFC

SPIEGEL, MITCHELL GTE SYSTEMS

STARK, MICHAEL NASA/GSFC

STAUFFER, MIKE GENERAL ELECTRIC CO.
STEINBACHER, JODY JET PROPULSION LAB
STOKES, ED COMPUTER SCIENCES CORP.
STONE, DAWN F. COMPUTER SCIENCES CORP.
STOTTS, DAVID UNIVERSITY OF MARYLAND
STUART, WILLIAM BUREAU OF CENSUS
SUDDITH, STEVE GSC

SWEENY, JOHNNY DEPT. OF TREASURY
SWEET, BILL SOFTWARE ENGINEERING INSTITUTE
SZULEWSKI, PAUL C.S. DRAPER LABS

TALLEY, RONALD D.

TARDIF, MICHELLE NASA/GSFC

TASAKI, KENI K. NASA/GSFC

TASKY, DEBORAH L. U.S. CENSUS BUREAU
TAUSWORTHE, ROBERT C. JPL

TENG, BRENDA COMPUTER SCIENCES CORP.
THOMAS, JOE H. NASA/MSFC

THOMPSON, JOHN T. FORD AEROSPACE
TREASURE, DAVE CENSUS BUREAU

TRIOUFIS, KOSTOS

TSAGOS, DINO

TURNROSE, BARRY COMPUTER SCIENCES CORP.
URI, CAROL FCC AMD-IM

USHER, GEORGE TREASURY-FMS-IS

VALETT, JON NASA/GSFC

VERNACCHIO, AL NASA/GSFC

VOIGT, SUSAN NASA/LARC

VOLTZ, SUSAN NASA/GSFC

WALDO, KAREN E. IIT RESEARCH INSTITUTE
WALLACE, DOLORES NATIONAL BUREAU OF STANDARDS
WANG, SHOUL

WASSERMAN, ANTHONY 1. INTERACTIVE DEVELOPMENT ENVIRONMENTS, INC.
WATSON, STAN NASA/GSFC

WEISS, DAVID U.S. CONGRESS

WENDE, CHARLES NASA/GSFC

WERLING, RICHARD

WILLIAMS, MIKE NYMA

WONG, YEE COMPUTER SCIENCES CORP.
WOOD, RICHARD COMPUTER SCIENCES CORP.

A-6

WU, LIQUN

WU, SABINA L.
WU, YEN

YANG, CHAO

YEE, MARY
YOUMAN, CHARLES
ZAMANI, DORY
ZAVELER, SAUL
ZELKOWITZ, MARV
ZYGIELBAUM, ART

UNIVERSITY OF MARYLAND
IITRI

HITRI

NASA/GSFC

LOGICON, INC.

THE MITRE CORPORATION
ACTION

U.S. AIR FORCE

DEPT. OF COMPUTER SCIENCES
JET PROPULSION LAB

A-7

APPENDIX B

STANDARD BIBLIOGRAPHY OF SEL LITERATURE

The technical papers, memorandums, and documents listed in
this bibliography are organized into two groups. The first
group is composed of documents issued by the Software Engi-
neering Laboratory (SEL) during its research and development
activities. The second group includes materials that were
published elsewhere but pertain to SEL activities.

SEL-ORIGINATED DOCUMENTS

SEL-76-001, Proceedings From the First Summer Software Engi-
neering Workshop, August 1976

SEL-77-002, Proceedings From the Second Summer Software En-

SEL-77-004, GSFC NAVPAK Design Specifications Languages
Study, P. A. Scheffer and C. E. Velez, October 1977

SEL-78-005, Proceedings From the Third Summer Software Engi-
neering Workshop, September 1978

SEL-78-006, GSFC Software Engineering Research Requirements
Analysis Study, P. A. Scheffer and C. E. Velez, November 1978

SEL-78-007, Applicability of the Rayleigh Curve to the SEL
Environment, T. E. Mapp, December 1978

SEL-78-302, FORTRAN Static Source Code Analyzer Program
(SAP) User's Guide (Revision 3), W. J. Decker and
W. A. Taylor, July 1986

SEL-79-002, The Software Engineering Laboratory: Relation-
ship Equations, K. Freburger and V. R. Basili, May 1979

SEL-79-003, Common Software Module Repository (CSMR) System
Description and User's Guide, C. E. Goorevich, A, L. Green,
and S. R. Waligora, August 1979

SEL-79-004, Evaluation of the Caine, Farber, and Gordon Pro-
gram Design Language (PDL) in the Goddard Space Flight Cen-
ter (GSFC) Code 580 Software Design Environment,

C. E. Goorevich, A. L. Green, and W. J. Decker, September
1979

SEL-79-005, Proceedings From the Fourth Summer Software En-
gineering Workshop, November 1979

SEL-80~002, Multi-Level Expression Design Language-
Requirement Level (MEDL-R) System Evaluation, W. J. Decker
and C. E. Goorevich, May 1980

SEL-80-003, Multimission Modular Spacecraft Ground Support
Software System (MMS/GSSS) State-of-the-Art Computer Systems/

Compatibility Study, T. Welden, M. McClellan, and
P. Liebertz, May 1980

SEL-80-005, A Study of the Musa Reliability Model,
A, M. Miller, November 1980

SEL-80-006, Proceedings From the Fifth Annual Software Engi-
neering Workshop, November 1980

SEL-80-007, An Appraisal of Selected Cost/Resource Estima-
tion Models for Software Systems, J. F. Cook and
F. E. McGarry, December 1980

SEL-81-008, Cost and Reliability Estimation Models (CAREM)
User's Guide, J. F. Cook and E. Edwards, February 1981

SEL-81-009, Software Engineering Laboratory Programmer Work-

bench Phase 1 Evaluation, W. J. Decker and F. E. McGarry,
March 1981

SEL-81-011, Evaluating Software Development by Analysis of
Change Data, D. M. Weiss, November 1981

SEL-81~012, The Rayleigh Curve As a Model for Effort Distri-

bution Over the Life of Medium Scale Software Systems, G. O.
Picasso, December 1981

SEL-81-013, Proceedings From the Sixth Annual Software Engi-
neering Workshop, December 1981

SEL-81-014, Automated Collection of Software Engineering
Data in the Software Engineering Laboratory (SEL),
A. L. Green, W. J. Decker, and F. E. McGarry, September 1981

SEL-81-101, Guide to Data Collection, V. E. Church,
D. N. Card, F. E. McGarry, et al., August 1982

SEL-81-102, software Engineering Laboratory (SEL) Data Base
Organization and User's Guide Revision 1, P. Lo and
D. Wyckoff, July 1983

S

SEL~81-104, The Software Engineering Laboratory, D. N. Card,
F. E. McGarry, G. Page, et al., February 1982

SEL-81-106, Software Engineering Laboratory (SEL) Document
Library (DOCLIB) System Description and User's Guide,
W. Taylor and W. J. Decker, May 1985

SEL-81-107, Software Engineering Laboratory (SEL) Compendium
of Tools, W. J. Decker, W. A. Taylor, and E. J. Smith,
February 1982

SEL-81-110, Evaluation of an Independent Verification and
Validation (IV&V) Methodology for Flight Dynamics, G. Page,
F. E. McGarry, and D. N. Card, June 1985

SEL-81-203, software Engineering Laboratory (SEL) Data Base
Maintenance System (DBAM) User's Guide and System Descrip-
tion, P. Lo, June 1984

SEL-81-205, Recommended Approach to Software Development,
F. E. McGarry, G. Page, S. Eslinger, et al., April 1983

SEL-82-001, Evaluation of Management Measures of Software
Development, G. Page, D. N. Card, and F. E. McGarry,
September 1982, vols. 1 and 2

SEL-82~-003, Software Engineering Laboratory (SEL) Data Base
Reporting Software User's Guide and System Description,
P. Lo, September 1982

SEL-82-004, Collected Software Engineering Papers: Vol-
ume 1, July 1982

SEL-82-007, Proceedings From the Seventh Annual Software
Engineering Workshop, December 1982

SEL-82-008, Evaluating Software Development by Analysis of
Changes: The Data From the Software Engineering Laboratory,
V. R. Basili and D. M. Weiss, December 1982

SEL-82-102, FORTRAN Static Source Code Analyzer Program
(SAP) System Description (Revision 1), W. A. Taylor and
W. J. Decker, April 1985

SEL-82-105, Glossary of Software Engineering Laboratory
Terms, T. A. Babst, F. E. McGarry, and M. G. Rohleder,

October 1983

SEL-82-406, Annotated Bibliography of Software Engineering
Laboratory Literature, D. N. Card, Q. L. Jordan, and
F. E. McGarry, November 1986

SEL-83-001, An Approach to Software Cost Estimation,
F. E. McGarry, G. Page, D. N. Card, et al., February 1984

SEL-83-002, Measures and Metrics for Software Development,
D. N. Card, F. E. McGarry, G. Page, et al., March 1984

SEL-83-003, Collected Software Engineering Papers: Vol-
ume II, November 1983

SEL-83-006, Monitoring Software Development Through Dynamic
Variables, C. W. Doerflinger, November 1983

SEL-83-007, Proceedings From the Eighth Annual Software En-
gineering Workshop, November 1983

SEL-84-001, Manager's Handbook for Software Development,
W. W. Agresti, F. E. McGarry, D. N. Card, et al., April 1984

SEL-84-002, Configuration Management and Control: Policies
and Procedures, Q. L. Jordan and E. Edwards, December 1984

SEL-84-003, Investigation of Specification Measures for the
Software Engineering Laboratory (SEL), W. W. Agresti,
V. E. Church, and F. E. McGarry, December 1984

SEL-84-004, Proceedings From the Ninth Annual Software Engi-

neering Workshop, November 1984

SEL-85-001, A Comparison of Software Verification Tech-

niques, D. N, Card, R. W. Selby, Jr., F. E. McGarry, et al.,
April 1985

SEL-85-002, Ada Training Evaluation and Recommendations From
the Gamma Ray Observatory Ada Development Team, R. Murphy
and M. Stark, October 1985

SEL-85-003, Collected Software Engineering Papers:
Volume III, November 1985

SEL-85-004, Evaluations of Software Technologies: Testing,
CLEANROOM, and Metrics, R. W. Selby, Jr., May 1985

SEL-85-005, Software Verification and Testing, D. N, Card,
C. Antle, and E. Edwards, December 1985

SEL-85-006, Proceedings From the Tenth Annual Software
Engineering Workshop, December 1985

B-4

" B R B BN EEE R

SEL-86-001, Programmer's Handbook for Flight Dynamics Soft-
ware Development, R. Wood and E. Edwards, March 1986

SEL-86-002, General Object-Oriented Software Development,
E. Seidewitz and M. Stark, August 1986

SEL-86-003, Flight Dynamics System Software Development En-
vironment Tutorial, J. Buell and P. Myers, July 1986

SEL-86-004, Collected Software Engineering Papers:
Volume IV, November 1986

SEL-86-005, Measuring Software Design, D. N. Card, October
1986

SEL-RELATED LITERATURE

Agresti, W. W., Definition of Specification Measures for the

Software Engineering Laboratory, Computer Sciences Corpora-
tion, CSC/TM-84/6085, June 1984

4Agresti, W. W., V. E. Church, D. N. Card, and P. L. Lo,
"Designing With Ada for Satellite Simulation: A Case Study,"
Proceedings of the First International Symposium on Ada for
the NASA Space Station, June 1986

2Agresti, W. W., F. E. McGarry, D. N. Card, et al., "Meas-
uring Software Technology," Program Transformation and Pro-
gramming Environments. New York: Springer-Verlag, 1984

lBailey, J. W., and V. R. Basili, "A Meta-Model for Soft-
ware Development Resource Expenditures," Proceedings of the
Fifth International Conference on Software Engineering.

New York: TIEEE Computer Society Press, 1981

lBasili, V. R., "Models and Metrics for Software Manage-

ment and Engineering," ASME Advances in Computer Technology,
January 1980, vol. 1

Basili, V. R., Tutorial on Models and Metrics for Software
Management and Engineering. New York: IEEE Computer
Society Press, 1980 (also designated SEL-80-008)

3Basili, V. R., "Quantitative Evaluation of Software
Methodology," Proceedings of the First Pan-Pacific Computer
Conference, September 1985

l1Basili, V. R., and J. Beane, "Can the Parr Curve Help
With Manpower Distribution and Resource Estimation Prob-

lems?", Journal of Systems and Software, February 1981,
vol. 2, no. 1

lgasili, V. R., and K. Freburger, "Programming Measurement
and Estimation in the Software Engineering Laboratory,"
Journal of Systems and Software, February 1981, vol. 2, no. 1

3Basili, V. R., and N. M. Panlilio-Yap, "Finding Relation-
ships Between Effort and Other Variables in the SEL," Pro-
ceedings of the International Computer Software and Applica-
tions Conference, October 1985

4Basili, V. R., and D. Patnaik, A Study on Fault Prediction
and Reliability Assessment in the SEL Environment, University
of Maryland, Technical Report TR-1699, August 1986

2Basili, V. R., and B. T. Perricone, "Software Errors and
Complexity: An Empirical Investigation," Communications of
the ACM, January 1984, vol. 27, no. 1

lBasili, V. R., and T. Phillips, "Evaluating and Comparing
Software Metrics in the Software Engineering Laboratory,"
Proceedings of the ACM SIGMETRICS Symposium/Workshop: Qual-
1ty Metrics, March 1981

3Basili, V. R., and C. L. Ramsey, "ARROWSMITH-P--A Proto-
type Expert System for Software Engineering Management,"
Proceedings of the IEEE/MITRE Expert Systems in Government
Symposium, October 1985

Basili, V. R., and R. Reiter, "Evaluating Automatable Meas-
ures for Software Development," Proceedings of the Workshop
on Quantitative Software Models for Reliability, Complexity,
and Cost. New York: IEEE Computer Society Press, 1979

2Basili, V. R., R. W. Selby, and T. Phillips, "Metric Anal-
ysis and Data Validation Across FORTRAN Projects," IEEE
Transactions on Software Engineering, November 1983

3Basili, V. R., and R. W. Selby, Jr., "Calculation and Use
of an Environments's Characteristic Software Metric Set,"
Proceedings of the Eighth International Conference on Soft-

ware Engineering. New York: IEEE Computer Society Press,
1985

Basili, V. R., and R. W. Selby, Jr., Comparing the Effective-

ness of Software Testing Strategies, University of Maryland,
Technical Report TR-1501, May 1985

4Basili, V. R., R. W. Selby, Jr., and D. H. Hutchens, "Ex-
perimentation in Software Engineering,” IEEE Transactions on
Software Engineering, July 1986

-4 -

R A

EETNTE

2Ba5111, V.R., and D. M. Weiss, A Methodology for Collect-
ing Valid Software Engineering Data, University of Maryland,
Technical Report TR-1235, December 1982

3Ba5111, V. R., and D. M. Weiss, "A Methodology for Collect-
ing Valid Software Engineering Data," IEEE Transactions on
Software Engineering, November 1984

lBasili, V. R., and M. V. Zelkowitz, "The Software Engi-
neering Laboratory: Objectives," Proceedings of the
Fifteenth Annual Conference on Computer Personnel Research,
August 1977

Basili, V. R., and M. V. Zelkowitz, "Designing a Software
Measurement Experiment," Proceedings of the Software Life
Cycle Management Workshop, September 1977

l1Basili, V. R., and M. V. Zelkowitz, "Operation of the Soft-
ware Engineering Laboratory," Proceedings of the Second Soft-
ware Life Cycle Management Workshop, August 1978

1Basili, V. R., and M. V. Zelkow1tz, "Measuring Software
Development Characteristics in the Local Environment," Com-
puters and Structures, August 1978, vol. 10

Basili, V. R., and M. V, Zelkowitz, "Analyzing Medium Scale
Software Development," Proceedings of the Third Interna-
tional Conference on Software Engineering. New York: IEEE
Computer Socliety Press, 1978

3Card D. N., "A Software Technology Evaluation Program,"
Annals do XVIII Congresso Nacional de Informatica, October
1985

4card, D. N., V. E. Church, and W. W. Agresti, "An Empiri-
cal Study of Software Design Practices," IEEE Transactions
on Software Engineering, February 1986

3Card D. N., G. T. Page, and F. E. McGarry, "Criteria for
Software Modularization," Proceedings of the Eighth Interna-
tional Conference on Software Engineering. New York: IEEE
Computer Society Press, 1985

lchen, E., and M. V. Zelkowitz, "Use of Cluster Analysis
To Evaluate Software Engineering Methodologies,"™ Proceed-
ings of the Fifth International Conference on Software

Engineering. New York: IEEE Computer Society Press, 1981

4Church, V. E., D. N. Card, W. W. Agresti, and
Q. L. Jordan, "An Approach for Assessing Software Proto-
types," ACM Software Engineering Notes, July 1986

B-7

2poerflinger, C. W., and V. R. Basili, "Monitoring Software
Development Through Dynamic Variables," Proceedings of the
Seventh International Computer Software and Applications
Conference. New York: IEEE Computer Society Press, 1983

Higher Order Software, Inc., TR~-9, A Demonstration of AXES
for NAVPAK, M. Hamilton and S. Zeldin, September 1977 (also
designated SEL-77-005)

3McGarry, F. E., J. Valett, and D. Hall, "Measuring the
Impact of Computer Resource Quality on the Software Develop-
ment Process and Product," Proceedings of the Hawaiian Inter-

national Conference on System Sciences, January 1985

3Page, G., F. E. McGarry, and D. N. Card, "A Practical Ex-
perience With Independent Verification and Validation,"
Proceedings of the Eighth International Computer Software
and Applications Conference, November 1984

3Ramsey, J., and V. R. Basili, "Analyzing the Test Process
Using Structural Coverage," Proceedings of the Eighth Inter-
national Conference on Software Engineering. New York:

IEEE Computer Socliety Press, 1985

4seidewitz, E., and M. Stark, "Towards a General Object-
Oriented Software Development Methodology," Proceedings of

the First International Symposium on Ada for the NASA Space
Station, June 1986

Turner, C., and G. Caron, A Comparison of RADC and NASA/SEL
Software Development Data, Data and Analysis Center for
Software, Special Publication, May 1981

Turner, C., G. Caron, and G. Brement, NASA/SEL Data Compen-
dium, Data and Analysis Center for Software, Special Publi-
cation, April 1981

3Weiss, D. M., and V. R. Basili, "Evaluating Software De-

velopment by Analysis of Changes: Some Data From the Soft-
ware Engineering Laboratory," IEEE Transactions on Software
Engineering, February 1985

1Ze1kowitz, M. V., "Resource Estimation for Medium Scale
Software Projects," Proceedings of the Twelfth Conference on
the Interface of Statistics and Computer Science.

New York: IEEE Computer Society Press, 1979

2zelkowitz, M. V., "Data Collection and Evaluation for Ex-
perimental Computer Science Research," Empirical Foundations

for Computer and Information Science (proceedings),
November 1982

B-8

-

[2

- S -,

- e

A2 Sl

|

Zelkowitz, M. V.,

and V. R.

Basili, "Operational Aspects of

a Software Measurement Facility," Proceedings of the Soft-
ware Life Cycle Management Workshop, September 1977

NOTES:

lrhis
ware

article also appears
Engineering Papers:

in SEL-82-004, Collected Soft-
Volume I, July 1982,

2Thisg
ware

article also appears
Engineering Papers:

in SEL-83-003, Collected Soft-
Volume II, November 1983.

3This
ware

article also appears
Engineering Papers:

in SEL-85-003, Collected Soft-
Volume III, November 1985.

4This
ware

article also appears
Engineering Papers:

in SEL-86-004, Collected Soft-
Volume IV, November 1986,

